Photocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal activity in ultra-low photocatalyst concentration of 0.2 µg/mL by solar and simulated light, respectively, after 10 min. The survival rate was studied for 6 min, resulting in 99.8% inhibition at the photocatalyst dose of 2 µg/mL. The mechanism of bactericidal efficiency was found to be that the photocatalyst has high oxidation potential in the valence band. Consequently, holes play a significant part in bactericidal efficiency.
The Iraqi market for securities in light of financial globalization faces real challenges at the local and international levels, which were reflected in their shadows on the overall economic reality, which imposed the necessity of making fundamental changes in terms of form and content, and from here stems the research problem in the ability of the Iraqi stock market to adapt to the transformations Financial imposed by financial globalization in light of the weakness of the economic structure and its position in the global economy. The research starts from the hypothesis that the Iraqi market for securities in light of financial globalization has an important and significant role in the economic field, through its role in stimula
... Show MoreZnS nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM). The particle size is determined by field effect scanning electron microscopy (FESEM), UV-Visible absorption spectroscopy and XRD. UV-Visible absorption spectroscopy analysis shows that the absorption peak of the as-prep
... Show MoreIn the present study, advanced oxidation treatment, the TiO2 /UV/H2O2 process was applied to decolorisation of the reactive yellow dyes in aqueous solution. The UV radiation was carried out with a 6 W low-pressure mercury lamp. The rate of color removal was studied by measuring the absorbency at a characteristic wavelength. The effects of H2O2 dosage, dye initial concentration and pH on decolorisation kinetics in the batch photoreactor were investigated. The highest decolorisation rates were observed (98.8) at pH range between 3 and 7. The optimal levels of H2O2 needed for the process were examined. It appears that high levels of H2O2 could reduce decolori
... Show MoreThis study synthesized nanocomposite photocatalyst materials from a mixture of Cu2O nanoparticles, ZnO nanoparticles, and graphene oxide (GO) through coprecipitation and hydrothermal methods. This study aims to determine the optimum composition of Cu2O/ZnO/GO nanocomposites in degrading methylene blue. The nanocomposite was synthesized in two steps: 1 the synthesis of Cu2O and ZnO nanoparticles through the coprecipitation method and the preparation of GO through the modified Hummer method. 2 The preparation of Cu2O and ZnO nanoparticles mixtures with GO through the hydrothermal method to form Cu2O/ZnO/GO nanocomposites. The adsorption-photocatalysis process of methylene blue
... Show More