Preferred Language
Articles
/
phb4UYoBVTCNdQwCFJQ0
Mobile position estimation using artificial neural network in CDMA cellular systems
...Show More Authors

Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The results show that the neural network has good performance compared with two other analytical methods which are average positioning method and optimal positioning method.

Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
Arabic Speech Classification Method Based on Padding and Deep Learning Neural Network
...Show More Authors

Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Ieee Access
Modified Elman Spike Neural Network for Identification and Control of Dynamic System
...Show More Authors

View Publication
Scopus (25)
Crossref (22)
Scopus Clarivate Crossref
Publication Date
Thu Jan 31 2019
Journal Name
Journal Of Engineering
Design of New Hybrid Neural Structure for Modeling and Controlling Nonlinear Systems
...Show More Authors

This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
The Use of the Artificial Damped Outrigger Systems in Tall R.C Buildings Under Seismic Loading
...Show More Authors

This paper studies the combination of fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. This optimizes the accuracy of the dynamic response and by providing higher level of damping, basically minimizes the wanted stiffness of the structure while at the same time optimizing the achievement.

     The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximu

... Show More
View Publication Preview PDF
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Engineering
Seismic Effects and Static Analysis for the Artificial Damped Outrigger Systems in Tall R.C Buildings
...Show More Authors

This paper studies the combination fluid viscous dampers in the outrigger system to add supplementary damping into the structure, which purpose to remove the dependability of the structure to lower variable intrinsic damping. It works by connecting the central core, comprising either shear walls or braced frames, to the outer perimeter columns.

     The modal considered is a 36 storey square high rise reinforced concrete building. By constructing a discrete lumped mass model, and using frequency-based response function, two systems of dampers, parallel and series systems are studied. The maximum lateral load at the top of the building is calculated, and  this load  w

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Robotics And Control (jrc)
Automated Stand-alone Surgical Safety Evaluation for Laparoscopic Cholecystectomy (LC) using Convolutional Neural Network and Constrained Local Models (CNN-CLM)
...Show More Authors

In this golden age of rapid development surgeons realized that AI could contribute to healthcare in all aspects, especially in surgery. The aim of the study will incorporate the use of Convolutional Neural Network and Constrained Local Models (CNN-CLM) which can make improvement for the assessment of Laparoscopic Cholecystectomy (LC) surgery not only bring opportunities for surgery but also bring challenges on the way forward by using the edge cutting technology. The problem with the current method of surgery is the lack of safety and specific complications and problems associated with safety in each laparoscopic cholecystectomy procedure. When CLM is utilize into CNN models, it is effective at predicting time series tasks like iden

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Nov 01 2014
Journal Name
Ibn Al-haitham Jour. For Pure & Appl. Sci.
Derivationof Mathematical Equations to Calculate the Geographical Coordinates ofUnknown Position SituatedataDistance from the Observer Position Using GPS Data
...Show More Authors

Publication Date
Mon Jun 01 2015
Journal Name
Journal Of Engineering
Artificial Neural Networks Modeling of Total Dissolved Solid in the Selected Locations on Tigris River, Iraq
...Show More Authors

The study aims to predict Total Dissolved Solids (TDS) as a water quality indicator parameter at spatial and temporal distribution of the Tigris River, Iraq by using Artificial Neural Network (ANN) model. This study was conducted on this river between Mosul and Amarah in Iraq on five positions stretching along the river for the period from 2001to 2011. In the ANNs model calibration, a computer program of multiple linear regressions is used to obtain a set of coefficient for a linear model. The input parameters of the ANNs model were the discharge of the Tigris River, the year, the month and the distance of the sampling stations from upstream of the river. The sensitivity analysis indicated that the distance and discharge

... Show More
View Publication Preview PDF
Publication Date
Sat Oct 25 2025
Journal Name
Iet Networks
An Effective Technique of Zero‐Day Attack Detection in the Internet of Things Network Based on the Conventional Spike Neural Network Learning Method
...Show More Authors
ABSTRACT<p>The fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t</p> ... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri May 16 2025
Journal Name
Asean Journal Of Science And Engineering
Enhancing Predictive Maintenance in Energy Systems Using a Hybrid Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) Framework for Rotating Machinery
...Show More Authors

This study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref