Using the Neural network as a type of associative memory will be introduced in this paper through the problem of mobile position estimation where mobile estimate its location depending on the signal strength reach to it from several around base stations where the neural network can be implemented inside the mobile. Traditional methods of time of arrival (TOA) and received signal strength (RSS) are used and compared with two analytical methods, optimal positioning method and average positioning method. The data that are used for training are ideal since they can be obtained based on geometry of CDMA cell topology. The test of the two methods TOA and RSS take many cases through a nonlinear path that MS can move through that region. The results show that the neural network has good performance compared with two other analytical methods which are average positioning method and optimal positioning method.
Two groups of chronic hepatitis B and C virus patients were divided into Pre-treated patients (25 CHB patients with positive HBs Ag for more than 6 months and 40 CHC patients), and post-treated patients [12 CHB patients (4, 6, and 2 were treated with lamivudine, IFN-? and combination of LMV + IFN-? respectively), and 27 patients for CHC (3, 13 and 11 patients were treated with Ribavirin, IFN-? and combination therapy (RBV+ IFN-?) respectively].These patients were followed up for 6 months. By using ELISA technique, levels of IL-6, IL-10, IFN-? and TNF-? were measured in vivo and in vitro (supernatant of PBMCs stimulated with PHA) and compared with healthy control. The mean level of IL-6, IL-10 and TNF-? in CHB patients showed significant dif
... Show MoreThe Evaluation of the immune response in Golden Hamsters experimentally infected with Leishmania donovani was determined in this study, particularly, the cellular immune response. Follow up has maintained to determine the Delayed Type of Hypersensitivity using skin test both in infected and control lab animals. Chicken red blood cells were used as a parameter to evaluate the immune system; they are dull and have the ability of immunization. Two concentrations of chicken R.B.C were examined to determine which gives the higher titration in Hamsters and those were 1.5 X 109 cell/ml and 3 X 109 cell/ml , the second concentration gave the maximum titration where then used in this work. After sensitization with Chicken R.B.C for both in
... Show MoreThe Evaluation of the immune response in Golden Hamsters experimentally infected with Leishmania donovani was determined in this study, particularly, the cellular immune response. Follow up has maintained to determine the Delayed Type of Hypersensitivity using skin test both in infected and control lab animals. Chicken red blood cells were used as a parameter to evaluate the immune system; they are dull and have the ability of immunization. Two concentrations of chicken R.B.C were examined to determine which gives the higher titration in Hamsters and those were 1.5 X 109 cell/ml and 3 X 109 cell/ml , the second concentration gave the maximum titration where then used in this work. After sensitization with Chicken R.B.C for both infected a
... Show MoreIn this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreThis article proposes a new technique for determining the rate of contamination. First, a generative adversarial neural network (ANN) parallel processing technique is constructed and trained using real and secret images. Then, after the model is stabilized, the real image is passed to the generator. Finally, the generator creates an image that is visually similar to the secret image, thus achieving the same effect as the secret image transmission. Experimental results show that this technique has a good effect on the security of secret information transmission and increases the capacity of information hiding. The metric signal of noise, a structural similarity index measure, was used to determine the success of colour image-hiding t
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreThis work presents the simulation of a Low density Parity Check (LDPC) coding scheme with
multiuserMulti-Carrier Code Division Multiple Access (MC-CDMA) system over Additive White
Gaussian Noise (AWGN) channel and multipath fading channels. The decoding technique used in
the simulation was iterative decoding since it gives maximum efficiency with ten iterations.
Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the
Orthogonal Frequency Division Multiplexing (OFDM). A 12 pilot carrier were used in the estimator
to compensate channel effect. The channel model used is Long Term Evolution (LTE) channel with
Technical Specification TS 25.101v2.10 and 5 MHz bandwidth including the chan
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.