In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sample was taken into consideration In order to calculate physical and microstructural characteristics including internal strain, dislocations density, surface area, the number of unit cells, and texture coefficient.
Abstract
The toughening of epoxy resins with the addition of organic or inorganic compounds is of great interest nowadays, considering their large scale of applications. In the present work, composites of epoxy are synthesized with kaolin particles having different particle sizes as reinforcement. Composites of epoxy with varying concentration (0 to 40 weight %) of kaolin was prepared by using hand lay method. The variation of mechanical properties such as modulus of elasticity, yield, tensile, and compressive strength with filler content was evaluated. The composite showed improved modulus of elasticity and compressive properties on addition of filler. In contrast, the tensile and yield strength of the composite
... Show MoreManganese-zinc ferrite MnxZn1-xFe2O4 (MnZnF) powder was prepared using the sol-gel method. The morphological, structural, and magnetic properties of MnZnF powder were studied using X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive X-ray (EDX), field emission-scanning electron microscopes (FE-SEM), and vibrating sample magnetometers (VSM). The XRD results showed that the MnxZn1-xFe2O4 that was formed had a trigonal crystalline structure. AFM results showed that the average diameter of Manganese-Zinc Ferrite is 55.35 nm, indicating that the sample has a nanostructure dimension. The EDX spectrum revealed the presence of transition metals (Mn, Fe, Zn, and O) in Mang
... Show MoreTendon is important structure of the human body, since it can sustain tensile loading. The primary function of this tissue is to stabilize the joints they attached to it during daily activities. As well as, tendon has viscoelastic properties that can determine their response to loading and restrict the potential of injuries. One of the major points that this paper works with is the study of the biomechanical behaviour of tendon in response to tensile loading to describe their biological behaviour. Also, conclude the mathematical expression that may illustrate the tendon behaviour. All of the experiments were made in Physiology laboratories / Medical College/ Al- Nahrain University on ten rats "Rattus Norvegicus" of [108- 360] gm weight f
... Show MorePMMA films of different thickness (0.006, 0.0105, 0.0206, 0.0385 and 0.056cm) were synthesized by casting process. The temperature and frequency dependence of dielectric constant and AC electrical conductivity measurements at various frequencies (10kHz-10MHz) and temperatures (293-373K) were carried out. Few anomalies in dielectric studies were observed near 313 and 373 K respectively. These points were related to glass transitions temperature. The variation of activation energy and conduction behavior was studied .From the AC conduction studies, it is confirmed that the mechanism responsible for the conduction process is hopping of carriers. The variations of the dielectric constant and loss as function of frequency at different tempera
... Show MoreCadmium sulphide CdS films with 200 nm have been prepared by thermal evaporation technique on glass substrate at substrate room temperature under vacuum of 10-5mbar.In this paper, the effect of Dielectric Barrier Discharge plasma on the optical properties of the CdS film. The prepared films were exposed to different time intervals (0, 3, 5, 8) min. For every sample, the Absorption A, absorption coefficient α , energy gap Eg ,extinction coefficient K and dielectric constant ε were studied. It is found that the energy gap were decreased with exposure time, and absorption , Absorption coefficient, refractive index, extinction coefficient, dielectric constant increased with time of exposure to the plasma. Our study conside
... Show MoreHollow core photonic bandgap fibers provide a new geometry for the realization and enhancement of many nonlinear optical effects. Such fibers offer novel guidance and dispersion properties that provide an advantage over conventional fibers for various applications. Dispersion, which expresses the variation with wavelength of the guided-mode group velocity, is one of the most important properties of optical fibers. Photonic crystal fibers (PCFs) offer much larger flexibility than conventional fibers with respect to tailoring of the dispersion curve. This is partly due to the large refractive-index contrast available in the silica/air microstructures, and partly due to the possibility of making complex refractive-index structure over the fibe
... Show MoreRare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show MoreAA3003-H14 aluminum alloy plates were welded by friction stir welding and TIG welding.
Fatigue properties of the welded joints were evaluated based on the superior tensile properties for
FSW at 1500 rpm rotational speed and 80 mm/min welding speed. However, there is not much
information available on effect of welding parameters with evolution of fatigue life of friction stir
welds. The present study experimentally analyzed fatigue properties for base, FSW, and TIG welds
of AA 3003-H14 aluminum alloy. Fatigue properties of FSW joints were slightly lower than the
base metal and higher than TIG welding.
Mixing aluminum nitrate nonahydrate with urea produced room temperatures clear colorless ionic liquid with lowest freezing temperature at (1: 1.2) mole ratio respectively. Freezing point phase diagram was determined and density, viscosity and conductivity were measured at room temperature. It showed physical properties similar to other ionic liquids. FT-IR,UV-Vis, 1H NMR and 13C NMR were used to study the interaction between its species where - CO ??? Al- bond was suggested and basic ion [Al(NO3)4]? and acidic ions [Al(NO3)2. xU]+ were proposed. Water molecule believed to interact with both ions. Redox potential was determined to be about 2 Volt from – 0.6 to + 1.4 Volt with thermal stability up to 326 ?.
Information about soil consolidation is essential in geotechnical design. Because of the time and expense involved in performing consolidation tests, equations are required to estimate compression index from soil index properties. Although many empirical equations concerning soil properties have been proposed, such equations may not be appropriate for local situations. The aim of this study is to investigate the consolidation and physical properties of the cohesive soil. Artificial Neural Network (ANN) has been adapted in this investigation to predict the compression index and compression ratio using basic index properties. One hundred and ninety five consolidation results for soils tested at different construction sites
... Show More