In this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sample was taken into consideration In order to calculate physical and microstructural characteristics including internal strain, dislocations density, surface area, the number of unit cells, and texture coefficient.
الذات والتحصيل الدراسي . وقد استخدمت الباحثة المنهج الوصفي التحليلي، وبلغت عينة الدراسة (500) طالبًا وطالبة، تم اختيارهم بالطريقة الطبقية العشوائية وهي تمثل (15%) من مجتمع الدراسة البالغ (3328) طالباً وطالبة من طلبة المرحلة الإعدادية واستخدمت الباحثة مقياسين تم بناء مقياس لقياس الجوهر والمظهر وتبني مقياس فاعلية الذات بعد إن قامت بترجمته وتعريبه وجعله ملائم للبيئة العراقية، كم تم استخراج درجات التحصيل الدراسي للع
... Show MoreSequence covering array (SCA) generation is an active research area in recent years. Unlike the sequence-less covering arrays (CA), the order of sequence varies in the test case generation process. This paper reviews the state-of-the-art of the SCA strategies, earlier works reported that finding a minimal size of a test suite is considered as an NP-Hard problem. In addition, most of the existing strategies for SCA generation have a high order of complexity due to the generation of all combinatorial interactions by adopting one-test-at-a-time fashion. Reducing the complexity by adopting one-parameter- at-a-time for SCA generation is a challenging process. In addition, this reduction facilitates the supporting for a higher strength of cove
... Show MoreThe purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals
... Show MoreVarious theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More