Due to the availability of technology stemming from in-depth research in this sector and the drawbacks of other identifying methods, biometrics has drawn maximum attention and established itself as the most reliable alternative for recognition in recent years. Efforts are still being made to develop a user-friendly system that is up to par with security-system requirements and yields more reliable outcomes while safeguarding assets and ensuring privacy. Human age estimation and Gender identification are both challenging endeavours. Biomarkers and methods for determining biological age and gender have been extensively researched, and each has advantages and disadvantages. Facial-image-based positioning is crucial for many applications, including safety and security systems, border control, human engagement in sophisticated ambient analytics, and biometric identification. Determining a person's age and gender is a complex study method. With the advent of deep learning, the study of face systems has been completely transformed, and estimation accuracy is a crucial parameter for evaluating algorithms and their efficacy in predicting absolute ages. The UTKFace dataset, which serves as the backbone of the face estimating system, was used to assess the method. The eyes, cheeks, nose, lips, and forehead provide the foundation of this function. AlexNet achieves a 98% accuracy rate across its lifespan of system results.
This research include design and implementation of an Iraqi cities database using spatial data structure for storing data in two or more dimension called k-d tree .The proposed system should allow records to be inserted, deleted and searched by name or coordinate. All the programming of the proposed system written using Delphi ver. 7 and performed on personal computer (Intel core i3).
Two types of adsorbents were used to treat oily wastewater, activated carbon and zeolite. The removal efficiencies of these materials were compared to each other. The results showed that activated carbon performed some better properties in removal of oil. The experimental methods which were employed in this investigation included batch and column studies. The former was used to evaluate the rate and equilibrium of carbon and zeolie adsorption, while the latter was used to determine treatment efficiencies and performance characteristics. Expanded bed adsorber was constructed in the column studies. In this study, the adsorption behavior of vegetable oil (corn oil) onto activated carbon and zeolite was examined as a function of the concentr
... Show MoreIn this study, a qualitative seismic velocity interpretation is made up through using 2D-seismic reflection data on Luhais oil field in southern of Iraq which is situated at about 105 Km to the east from the Basra city. Luhais oil field was chosen to study the type and nature of the distribution of the seismic velocities of Nahr Umr and Zubair Formations in order to show its explorational importance, where these formations contain abundant quantities of hydrocarbons. Picking of the tops of Nahr Umr and Zubair was carried out from the synthetic seismogram which is calculated from sonic-logs and check shot of well Lu-2. Velocity model was obtained via using an implementation of Petrel program version, 2013 and was corrected according to to
... Show MorePure SnSe thin film and doped with S at different percentage (0,3,5,7)% were deposited from alloy by thermal evaporation technique on glass substrate at room temperature with 400±20nm thickness .The influences of S dopant ratio on characterization of SnSe thin film Nano crystalline was investigated by using Atomic force microscopy(AFM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), Hall Effect measurement, UV-Vis absorption spectroscopy to study morphological, structural, electrical and optical properties respectively .The XRD showed that all the films have polycrystalline in nature with orthorhombic structure, with preferred orientation along (111)plane .These films was manufactured of very fine crystalline size in the ra
... Show MoreRegression models are one of the most important models used in modern studies, especially research and health studies because of the important results they achieve. Two regression models were used: Poisson Regression Model and Conway-Max Well- Poisson), where this study aimed to make a comparison between the two models and choose the best one between them using the simulation method and at different sample sizes (n = 25,50,100) and with repetitions (r = 1000). The Matlab program was adopted.) to conduct a simulation experiment, where the results showed the superiority of the Poisson model through the mean square error criterion (MSE) and also through the Akaiki criterion (AIC) for the same distribution.
Paper type:
... Show MoreKidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors. In this paper, tried to implement an automated segmentation methods of gray level CT images is used to provide information such as anatomical structure and identifying the Region of Interest (ROI) i.e. locate tumor, lesion and other in kidney.
A CT image has inhomogeneity, noise which affects the continuity and accuracy of the images segmentation. In
Digital change detection is the process that helps in determining the changes associated with land use and land cover properties with reference to geo-registered multi temporal remote sensing data. In this research change detection techniques have been employed to detect the changes in marshes in south of Iraq for two period the first one from 1973 to 1984 and the other from 1973 to 2014 three satellite images had been captured by land sat in different period. Preprocessing such as geo-registered, rectification and mosaic process have been done to prepare the satellite images for monitoring process. supervised classification techniques such maximum likelihood classification has been used to classify the studied area, change detection aft
... Show MoreSteganography is a technique of concealing secret data within other quotidian files of the same or different types. Hiding data has been essential to digital information security. This work aims to design a stego method that can effectively hide a message inside the images of the video file. In this work, a video steganography model has been proposed through training a model to hiding video (or images) within another video using convolutional neural networks (CNN). By using a CNN in this approach, two main goals can be achieved for any steganographic methods which are, increasing security (hardness to observed and broken by used steganalysis program), this was achieved in this work as the weights and architecture are randomized. Thus,
... Show MoreThis article aims to provide a bibliometric analysis of intellectual capital research published in the Scopus database from 1956 to 2020 to trace the development of scientific activities that can pave the way for future studies by shedding light on the gaps in the field. The analysis focuses on 638 intellectual capital-related papers published in the Scopus database over 60 years, drawing upon a bibliometric analysis using VOSviewer. This paper highlights the mainstream of the current research in the intellectual capital field, based on the Scopus database, by presenting a detailed bibliometric analysis of the trend and development of intellectual capital research in the past six decades, including journals, authors, countries, inst
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show More