Objective: To evaluate the therapeutic activity of probiotics mixture of Lactobacillus plantarum and Lactobacillus acidophilus towards Cryptosporidium infection in experimentally infected mice. Oocysts of Cryptosporidium were separated from the stool of humans to infect mice. Methods: Forty male albino mice were split equally into four groups, every group contained 10 mice, the group I (early treated group), were treated from the 1st day from infection to the 11th post-infection, group II (late treated group), were treated from the 4th day from infection to the 15th post-infection, and group (III) (untreated group), were mice considered as a positive control group. Results: It was showed that daily application of a mixture of L. plantarum with L. acidophilus could reduce the parasitic infection in mice as compared with the untreated group, and it was confirmed that the using of these probiotics in the early treated group was more efficient than the using of these probiotics in the late treated group. Conclusion: A mixture of L. plantarum and L. acidophilus are good therapeutic agents for cryptosporidial infection
Contemporary life is racing against time in its temptations and variables, and it has become shaped and changed in an amazing way in its various aspects and fields. This was facilitated by intellectual and scientific communication between civilizations, and the rapid progression in successive inventions and discoveries in the fields of science and arts of knowledge. This contributed to a great economic and commercial renaissance. Then, these economic developments entered the world into a very strong competition, which forced producers to calculate all production costs, to reach the highest profits by reducing the price of the produced commodity on the one hand, and achieving quality in appearance (especially) on the other hand. Since the ma
... Show MoreActivity recognition (AR) is a new interesting and challenging research area with many applications (e.g. healthcare, security, and event detection). Basically, activity recognition (e.g. identifying user’s physical activity) is more likely to be considered as a classification problem. In this paper, a combination of 7 classification methods is employed and experimented on accelerometer data collected via smartphones, and compared for best performance. The dataset is collected from 59 individuals who performed 6 different activities (i.e. walk, jog, sit, stand, upstairs, and downstairs). The total number of dataset instances is 5418 with 46 labeled features. The results show that the proposed method of ensemble boost-based classif
... Show MoreSpergularia iraqensis sp. nov. is described as a new species from Iraq. This species has been collected from Diyala Province in the central east of Iraq; it is closely related to Spergularia rubra (L.) J. Presl & C. Presl, 1819 and Spergularia bocconei (Scheele) Graebn., 1919.
The distinguishing of the morphological characteristics of the new species alongside the two similar species are discussed with photographs, and an identification key is given for Spergularia iraqensis and other closely related species.
Worldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, compressive st
... Show MoreMachine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a
... Show MoreIn this study, the dynamic modeling and step input tracking control of single flexible link is studied. The Lagrange-assumed modes approach is applied to get the dynamic model of a planner single link manipulator. A Step input tracking controller is suggested by utilizing the hybrid controller approach to overcome the problem of vibration of tip position through motion which is a characteristic of the flexible link system. The first controller is a modified version of the proportional-derivative (PD) rigid controller to track the hub position while sliding mode (SM) control is used for vibration damping. Also, a second controller (a fuzzy logic based proportional-integral plus derivative (PI+D) control scheme) is developed for both vibra
... Show More