Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.
This study was aimed to use plant tissue culture technique to induce callus formation of Aloe vera on MS. Medium supplied with 10 mg/l NAA and 5 mg/l BA that exhibit the best results even with subculturing. As the method of [1] 1g. dru weight of callus induced from A. vera crown and in vivo crown were extracted then injected in HPLC using the standards of Ascorbic acid (vit. C), Salysilic acid and Nicotenic acid (vit. B5) to compare with the plant extracts. Results showed high potential of increasing some secondary products using the crown callus culture of A. vera as compared with in vivo crown, Ascorbic acid was 1.829 ?g/l in in vivo crown and increased to 3.905 ?g/l crown callus culture . Salysilic acid raised from 3.54 ?g/l in in vivo c
... Show MoreBrain tissues segmentation is usually concerned with the delineation of three types of brain matters Grey Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). Because most brain structures are anatomically defined by boundaries of these tissue classes, accurate segmentation of brain tissues into one of these categories is an important step in quantitative morphological study of the brain. As well as the abnormalities regions like tumors are needed to be delineated. The extra-cortical voxels in MR brain images are often removed in order to facilitate accurate analysis of cortical structures. Brain extraction is necessary to avoid the misclassifications of surrounding tissues, skull and scalp as WM, GM or tumor when implementing s
... Show MoreThe impacts of the inflammatory process on neoplasia development were observed in many cancer, it has a great role in the etiology, development and progression of invasive colorectal tumors. This study was designed to investigate the BRAF mutation and assist the clinicopathological parameter in some Iraqi bowel inflammation and colorectal cancer patients. Thirty patients were enrolled in this study (15 suffering bowel inflammation and 15 having colorectal cancer). BRAF gene was screened for the presence of mutations using PCR technique and direct sequencing. .The results revealed no BRAF mutation in position 1799 for exon fifteen in both samples of bowel inflammation and colorectal cancer. These results were confirmed previous arti
... Show MoreThe brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreBackground: Ultrasound is a valuable tool for evaluating fetal problems throughout pregnancy. Amniotic fluid anomalies have been associated with unfavorable maternal, fetal, and obstetrical outcomes. Objective: To determine the effect of echogenic amniotic fluid during term pregnancy on the presence of meconium stain liquor and pregnancy outcome. Methods: A cross-sectional study was conducted on 1080 term pregnant women who visited Al-Elwiya Maternity Teaching Hospital from May 1st, 2021, to May 1st, 2023. Ultrasound was used to analyze echogenic amniotic fluid and turbid liquor. The liquor state was tested either after an artificial membrane rupture in the vaginal delivery trial or during a cesarean section. Results: Echogenic amni
... Show MoreThis paper presents a new and effective procedure to extract shadow regions of high- resolution color images. The method applies this process on modulation the equations of the band space a component of the C1-C2-C3 which represent RGB color, to discrimination the region of shadow, by using the detection equations in two ways, the first by applying Laplace filter, the second by using a Kernel Laplace filter, as well as make comparing the two results for these ways with each other's. The proposed method has been successfully tested on many images Google Earth Ikonos and Quickbird images acquired under different lighting conditions and covering both urban, roads. Experimental results show that this algorithm which is simple and effective t
... Show MoreModern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the
... Show MoreSoftware-defined networking (SDN) is an innovative network paradigm, offering substantial control of network operation through a network’s architecture. SDN is an ideal platform for implementing projects involving distributed applications, security solutions, and decentralized network administration in a multitenant data center environment due to its programmability. As its usage rapidly expands, network security threats are becoming more frequent, leading SDN security to be of significant concern. Machine-learning (ML) techniques for intrusion detection of DDoS attacks in SDN networks utilize standard datasets and fail to cover all classification aspects, resulting in under-coverage of attack diversity. This paper proposes a hybr
... Show MoreBackground: Multiple sclerosis is a chronic autoimmune inflammatory demyelinating disease of the central nervous system of unknown etiology. Different techniques and magnetic resonance image sequences are widely used and compared to each other to improve the detection of multiple sclerosis lesions in the spinal cord. Objective: To evaluate the ability of MRI short tau inversion recovery sequences in improvementof multiple sclerosis spinal cord lesion detection when compared to T2 weighted image sequences. Type of the study: A retrospective study. Methods: this study conducted from 15thAugust 2013 to 30thJune 2014 at Baghdad teaching hospital. 22 clinically definite MS patients with clinical features suggestive of spinal cord involvement,
... Show More