Cybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a new RNA encoding method and ResNet50 Model, where the encoding is done by splitting the training records into different groups. These groups are protocol, service, flag, and digit, and each group is represented by the number of RNA characters that can represent the group's values. The RNA encoding phase converts network traffic records into RNA sequences, allowing for a comprehensive representation of the dataset. The detection model, utilizing the ResNet architecture, effectively tackles training challenges and achieves high detection rates for different attack types. The KDD-Cup99 Dataset is used for both training and testing. The testing dataset includes new attacks that do not appear in the training dataset, which means the system can detect new attacks in the future. The efficiency of the suggested anomaly intrusion detection system is done by calculating the detection rate (DR), false alarm rate (FAR), and accuracy. The achieved DR, FAR, and accuracy are equal to 96.24%, 6.133%, and 95.99%. The experimental results exhibit that the RNA encoding method can improve intrusion detection.
The work includes synthesis and characterization of some new heterocyclic compounds, as flow: The compound (3) (5-(4-chlorophenyl) -2-hydrazinyl-1,3,4-oxadiazole was synthesized by using two methods; the first method includes the direct reaction between hydrazine hydrate 80% and 5-(4-chlorophenyl)-2- (ethylthio) 1,3,4-oxadiazole (1), the second method involves converting 5-(4-chlorophenyl)-1,3,4-oxadiazol-2-amine (2) to diazonium salt then reducing this salt to compound (3) by stannous chloride. Compound (3) was used as starting material for synthesizing several fused heterocyclic compounds. The compound 6-(4-chlorophenyl)[1,2.4] triazolo [3,4,b][1,3,4] oxadiazole-3-(2H) thione (compound 4) was synthesized from the reaction of compound (
... Show MoreThe work includes synthesis and characterization of some new heterocyclic compounds, as flow: The compound (3) (5-(4-chlorophenyl) -2-hydrazinyl-1,3,4-oxadiazole was synthesized by using two methods; the first method includes the direct reaction between hydrazine hydrate 80% and 5-(4-chlorophenyl)-2- (ethylthio) 1,3,4-oxadiazole (1), the second method involves converting 5-(4-chlorophenyl)-1,3,4-oxadiazol-2-amine (2) to diazonium salt then reducing this salt to compound (3) by stannous chloride. Compound (3) was used as starting material for synthesizing several fused heterocyclic compounds. The compound 6-(4-chlorophenyl)[1,2.4] triazolo [3,4,b][1,3,4] oxadiazole-3-(2H) thione (compound 4) was synthesized from the reaction of compound (3)
... Show MoreThis paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller i
... Show MoreOptimizing the Access Point (AP) deployment has a great role in wireless applications due to the need for providing an efficient communication with low deployment costs. Quality of Service (QoS), is a major significant parameter and objective to be considered along with AP placement as well the overall deployment cost. This study proposes and investigates a multi-level optimization algorithm called Wireless Optimization Algorithm for Indoor Placement (WOAIP) based on Binary Particle Swarm Optimization (BPSO). WOAIP aims to obtain the optimum AP multi-floor placement with effective coverage that makes it more capable of supporting QoS and cost-effectiveness. Five pairs (coverage, AP deployment) of weights, signal thresholds and received s
... Show MoreThis paper analysed the effect of electronic internal auditing (EIA) based on the Control Objectives for Information and Related Technologies (COBIT) framework. Organisations must implement an up-to-date accounting information system (AIS) capable of meeting their auditing requirements. Electronic audit risk (compliance assessment, control assurance, and risk assessment) is a development by Weidenmier and Ramamoorti (2006) to improve AIS. In order to fulfil the study’s objectives, a questionnaire was prepared and distributed to a sample comprising 120 employees. The employees were financial managers, internal auditors, and workers involved in the company’s information security departments in the General Company for Electricity D
... Show MoreCorrect grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show More