The aim of this research is to identify the strengths and weaknesses of organizational health in the Iraqi Central Handball Federation from the point of view of those who manage the implementation of the annual curriculum, and adopt a descriptive approach in the method of studying the case. This is based on a sample of administrators of the Iraqi Handball Federation curriculum [trainers, governors, members, president, the 138 members of the Central Federation's Administrative Authority, the President, members of the sub-federations of the sports market (2021/2022) selected deliberately by 100% and then divided into statistical analysis sample (30), reconnaissance sample (10), and application sample (98)]. The regulatory health questionnaire in its Italian version was prepared to suit the specificity of the research and the type of sample it was assigned in accordance with systematic sequential steps for its acceptance of the main measurement cad actor in this research. This was then applied to address the problem researched, and its data were processed by the system (SPSS) to make conclusions and applications that help regulatory health in support of the efforts of the Central Handball Federation to implement the annual curriculum from the point of view of those who manage its implementation, and help activate the role of sponsors to manage the implementation of the annual curriculum in the Central Handball Federation effectively, and was then applied to address the research problem. It has complementary factors that need to be available at a high level in the Central Handball Federation to help manage the implementation of the annual curriculum in full, and its specificity in managing the implementation of the annual curriculum in the Central Handball Federation requires comprehensiveness and the need for its elements to achieve a high level of it. It is necessary to support them in the formation of the Central Handball Federation to further activate the role of the worlds and determine their role and avoid feeling the loss of efforts, a careful and periodic review of the level of organizational health must be conducted before planning the annual curriculum in the Central Handball Federation, modifying the paths of weakness, supporting its strengths and taking into account its suitability in order to achieve the goals when implemented later.
In this paper, we present an approximate analytical and numerical solutions for the differential equations with multiple delay using the extend differential transform method (DTM). This method is used to solve many linear and non linear problems.
A new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
In this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw
... Show MoreIn this paper, cubic trigonometric spline is used to solve nonlinear Volterra integral equations of second kind. Examples are illustrated to show the presented method’s efficiency and convenience.
In this paper, a method based on modified adomian decomposition method for solving Seventh order integro-differential equations (MADM). The distinctive feature of the method is that it can be used to find the analytic solution without transformation of boundary value problems. To test the efficiency of the method presented two examples are solved by proposed method.
In this study the most stable isobar for some isobaric families (light and intermediate ) nuclei with mass number (A) equals to (15-30) & (101- 115) have been determined. This determination of stable nuclide can help to determine the suitable nuclide, which can be used in different fields.
Most stable isobar can be determined by two means. First: plot mass parabolas (plotting the binding energy (B.E) as a function of the atomic number (Z)) for these isobaric families, in this method most stable isobars represent the lowest point in mass parabola (the nuclide with the highest value of binding energy).
Second: calculated the atomic number for most stable isobar (ZA) value.
Our results show that
... Show MoreIn this research we solved numerically Boltzmann transport equation in order to calculate the transport parameters, such as, drift velocity, W, D/? (ratio of diffusion coefficient to the mobility) and momentum transfer collision frequency ?m, for purpose of determination of magnetic drift velocity WM and magnetic deflection coefficient ? for low energy electrons, that moves in the electric field E, crossed with magnetic field B, i.e; E×B, in the nitrogen, Argon, Helium and it's gases mixtures as a function of: E/N (ratio of electric field strength to the number density of gas), E/P300 (ratio of electric field strength to the gas pressure) and D/? which covered a different ranges for E/P300 at temperatures 300°k (Kelvin). The results show
... Show MoreIn this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
In this paper, Touchard polynomials (TPs) are presented for solving Linear Volterra integral equations of the second kind (LVIEs-2k) and the first kind (LVIEs-1k) besides, the singular kernel type of this equation. Illustrative examples show the efficiency of the presented method, and the approximate numerical (AN) solutions are compared with one another method in some examples. All calculations and graphs are performed by program MATLAB2018b.
This paper demonstrates a new technique based on a combined form of the new transform method with homotopy perturbation method to find the suitable accurate solution of autonomous Equations with initial condition. This technique is called the transform homotopy perturbation method (THPM). It can be used to solve the problems without resorting to the frequency domain.The implementation of the suggested method demonstrates the usefulness in finding exact solution for linear and nonlinear problems. The practical results show the efficiency and reliability of technique and easier implemented than HPM in finding exact solutions.Finally, all algorithms in this paper implemented in MATLAB version 7.12.