Preferred Language
Articles
/
pBe7uI4BVTCNdQwCcFd3
Bayesian Inference for Reliability Function of Gompertz Distribution
Abstract<p>In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based on Jeffreys prior information.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
International Journal Of Nonlinear Analysis And Applications
comparing three estimators of fuzzy reliability for one scale parameter rayleigh distribution

Statistical methods and statistical decisions making were used to arrange and analyze the primary data to get norms which are used with Geographic Information Systems (GIS) and spatial analysis programs to identify the animals production and poultry units in strategic nutrition channels, also the priorities of food insecurity through the local production and import when there is no capacity for production. The poultry production is one of the most important commodities that satisfy human body protein requirements, also the most important criteria to measure the development and prosperity of nations. The poultry fields of Babylon Governorate are located in Abi Ghareg and Al_Kifil centers according to many criteria or factors such as the popu

... Show More
Scopus (1)
Scopus
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Comparison of Bayes' Estimators for the Exponential Reliability Function Under Different Prior Functions

 In this study, we derived the estimation for Reliability of the Exponential distribution based on the Bayesian approach. In the Bayesian approach, the parameter of the Exponential distribution is assumed to be random variable .We  derived  posterior distribution the parameter of the Exponential distribution under four types priors distributions for the scale parameter of the Exponential distribution is: Inverse Chi-square distribution, Inverted Gamma distribution, improper distribution, Non-informative distribution. And the estimators for Reliability is obtained using the two proposed loss function in this study which is based on the natural logarithm for Reliability function .We used simulation technique, to compare the

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sat Jun 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
NONPARAMETRIC And Semiparametric Bayesian Estimators in survival function analysis

 Most statistical research generally relies on the study of the behaviour of different phenomena during specific time periods and the use of the results of these studies in the development of appropriate recommendations and decision-making and for the purpose of statistical inference on the parameters of the statistical distribution of life times in  The technical staff of most of the manufacturers in the research units of these companies deals with censored data, the main objective of the study of survival is the need to provide information that is the basis for decision making and must clarify the problem and then the goals and limitations of this study and that  It may have different possibilities to perform the

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 06 2008
Journal Name
Diyala Journal For Pure Science
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery

... Show More
Scopus (2)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Pais estimator for the reliability function of the Pareto model of Type I failure

In this paper an estimator of reliability function for the pareto dist. Of the first kind has been derived and then a simulation approach by Monte-Calro method was made to compare the Bayers estimator of reliability function and the maximum likelihood estimator for this function. It has been found that the Bayes. estimator was better than maximum likelihood estimator for all sample sizes using Integral mean square error(IMSE).

Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Different Estimation Methods for System Reliability Multi-Components model: Exponentiated Weibull Distribution

        In this paper, estimation of system reliability of the multi-components in stress-strength model R(s,k) is considered, when the stress and strength are independent random variables and follows the Exponentiated Weibull Distribution (EWD) with known first shape parameter θ and, the second shape parameter α is unknown using different estimation methods. Comparisons among the proposed estimators through  Monte Carlo simulation technique were made depend on mean squared error (MSE)  criteria

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

Crossref
View Publication Preview PDF
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Estimating the Reliability Function of (2+1) Cascade Model

This paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.

Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF