Preferred Language
Articles
/
pBe-P48BVTCNdQwCrmbN
Image Compression Based on Cubic Bezier Interpolation, Wavelet Transform, Polynomial Approximation, Quadtree Coding and High Order Shift Encoding
...Show More Authors

In this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, thebi-orthogonal wavelet transform is applied on the produced Bezier residue component. The resulting transform coefficients are quantized using progressive scalar quantization and the 1 st order polynomial is applied on the quantized LL subband to produce the polynomial surface, then the produced polynomial surface is subtracted from the LL subband to get the residue component (high frequency component). Then, the quantized values are represented using quad tree encoding to prune the sparse blocks, followed by high order shift coding algorithm to handle the remaining statistical redundancy and to attain efficient compression performance. The conducted tests indicated that the introduced system leads to promising compression gain.

Crossref
View Publication
Publication Date
Thu Feb 01 2018
Journal Name
Iet Signal Processing
Signal compression and enhancement using a new orthogonal‐polynomial‐based discrete transform
...Show More Authors

View Publication
Scopus (37)
Crossref (38)
Scopus Clarivate Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Physics: Conference Series
EEG Motor-Imagery BCI System Based on Maximum Overlap Discrete Wavelet Transform (MODWT) and cubic SVM
...Show More Authors
Abstract<p>Communication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p</p> ... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Wed Jul 25 2018
Journal Name
International Journal Of Engineering Trends And Technology
Polynomial Color Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jul 01 2018
Journal Name
International Journal Of Engineering Research And Management
The first and Second Order Polynomial Models with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Sat Dec 02 2017
Journal Name
Al-khwarizmi Engineering Journal
Speech Signal Compression Using Wavelet And Linear Predictive Coding
...Show More Authors

A new algorithm is proposed to compress speech signals using wavelet transform and linear predictive coding. Signal compression based on the concept of selecting a small number of approximation coefficients after they are compressed by the wavelet decomposition (Haar and db4) at a suitable chosen level and ignored details coefficients, and then approximation coefficients are windowed by a rectangular window and fed to the linear predictor. Levinson Durbin algorithm is used to compute LP coefficients, reflection coefficients and predictor error. The compress files contain LP coefficients and previous sample. These files are very small in size compared to the size of the original signals. Compression ratio is calculated from the size of th

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model
...Show More Authors

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

View Publication
Crossref (4)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Lossless and Lossy Polynomial Image Compression
...Show More Authors

Crossref (1)
Crossref
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Lossless and Lossy Polynomial Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
International Journal Of Engineering Research And Advanced Technology
The Use of First Order Polynomial with Double Scalar Quantization for Image Compression
...Show More Authors

Publication Date
Sun Jan 16 2022
Journal Name
Iraqi Journal Of Science
The Use of Wavelet, DCT & Quadtree for Images Color Compression
...Show More Authors

The need for image compression is always renewed because of its importance in reducing the volume of data; which in turn will be stored in less space and transferred more quickly though the communication channels.
In this paper a low cost color image lossy color image compression is introduced. The RGB image data is transformed to YUV color space, then the chromatic bands U & V are down-sampled using dissemination step. The bi-orthogonal wavelet transform is used to decompose each color sub band, separately. Then, the Discrete Cosine Transform (DCT) is used to encode the Low-Low (LL) sub band. The other wavelet sub bands are coded using scalar Quantization. Also, the quad tree coding process was applied on the outcomes of DCT and

... Show More
View Publication Preview PDF