New evidence on nanotechnology has shown interest in the creation and assessment of nanoparticles for cancer treatment. Worldwide, a wide range of tumor-targeted approaches are being developed to reduce side effects and boost the efficacy of cancer therapy. One strategy that shows promise is the use of metallic nanoparticles to increase the radio sensitization of the cancer cells while reducing or maintaining the normal tissue complication probability during radiation therapy. In this study, atmospheric plasma was created using argon gas to create Au NPs using the plasma jet scheme, and their ability to induce apoptosis as an anticancer mechanism was tested. Aqueous gold tetrachloride salts (HAuCl4·3H2O) ere used to produce gold nanoparticles. For conformations, various techniques were used to explore the characterization of Au NPs, included UV–Vis spectroscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM),). UV–vis spectroscopy showed a maximum absorption peak located between 520 and 530 nm. The peaks of XRD 2θ are observed at 38.8°, 44.47°, 64.4° and 77.17°. They correspond to the 111, 200, 220 and 311 crystalline levels respectively. The peak intensity (111) at 38.8° diffraction was maximum peak. the image of FESEM showed that the Au NPs which produced are irregularly shaped spheres with sizes ranging between 41-46 nm. The effect of nanoparticles on REF normal cell lines was studied to calculate cytotoxicity and the greatest rate of destruction of REF normal cell lines was 22.667% after incubation time 72 hour after exposure to the combination of irradiated gold nanoparticles-cisplatin with 50 Gray photon X-ray and 1 µg of cisplatin and the minimum was 0.7% after incubation time 24 hour after exposure to the combination of irradiated gold nanoparticles-cisplatin with 0.5 Gray photon x-ray and 0.025 µg of cisplatin. Its possible to enhance chemotherapy treatment by these nanoparticles, In the future these techniques will be possible to use for kill cancer cells, especially after showed low toxicity on normal cells.
In this work, γ-Al2O3NPs were successfully biosynthesized, mediated aluminum nitrate nona hydrate Al(NO3)3.9H2O, sodium hydroxide, and aqueous clove extract in alkali media. The γ-Al2O3NPs were characterized by different techniques like Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy–dispersive x-ray spectroscopy, transmission electron microscope (TEM), Energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The final results indicated the γ-Al2O3NPs nanoparticle size, bonds nature, element phase, crystallinity, morphology, surface image, particle analysis – threshold detection, and the topography parameter. The id
... Show Moresignificant bits either in the spatial domain or frequency domain sequentially or pseudo
randomly through the cover media (Based on this fact) statistical Steganalysis use different
techniques to detect the hidden message, A proposed method is suggested of a stenographic
scheme a hidden message is embedded through the second least significant bits in the
frequency domain of the cover media to avoid detection of the hidden message through the
known statistical Steganalysis techniques.
Most dental works require a diagnostic impression; alginate is contemplated as the most popular material used for this purpose. Titanium dioxide nanoparticles show evidence of antimicrobial activity in the recent era, for this purpose, this study aimed to evaluate the effect of adding Titanium dioxide nanoparticles on antimicrobial activity and surface detail reproduction of alginate impression material. Materials and methods: Titanium dioxide nanoparticles (purity = 99%, size= 20nm) was added to alginate at three different concentrations (2%, 3% and 5%). 84 samples were prepared in total. Samples were tested for antimicrobial activity using a disc diffusion test, and surface detail reproduction was done using (ISO 21563:2021). One-way A
... Show MoreThis study was carried out to evaluate parasitological and immunological of the effect of chitosan and chitosannanoparticles loaded with spiramycin on toxoplasmosis infected mice. After injection intra peritoneal with 103viable tachyzoites for acute infection, treatments given for seven days. Peritoneal fluid examination revealed a significant decrease in the number of Toxoplasmagondiitachyzoites in all treated infected mice compared with infected non-treated. The combined therapy gave better results than single. The best effect was observed in group of mice treated with spiramycin combined with chitosan nanoparticles. Also immunoglobulin Ig Manti body and gamma Interferon (INFγ), Tumor Necrosis Factor alpha (TNF-α) cytokines responses ag
... Show MoreObjective: The goal of this research was to evaluate where selenium nanoparticles impact the activity of antibodies in immunized lambs with foot and mouth vaccines by modulating the immune system. Materials and Methods: Two groups of lambs of 3–4 months of age were injected with 1 ml of ARRIAH-VAC vaccine intramuscularly in the neck, five Lambs were given selenium nanoparticles (size 100 nm) oral administration of selenium nano dose of 0.1 mg/kg of body mass once every day for sixty days considered as group one (G1) while the other five used as control Group 2 (G2). Results: This resulted in the establishment of an immune response, as evidenced by a rise in antibody titer in the blood using the ELISA test for three serotypes A,
... Show MoreObjective: Chronic periodontitis (CP) is a common inflammatory disease that causes destruction to the supporting tissues of the teeth. Many treatment modalities tried to stop the disease progression. Platelet-rich plasma (PRP) is one of the regenerative methods that used in adjunct to conventional periodontal treatment. The aim of this study was to evaluate the anti-inflammatory effect of PRP by monitoring the lymphocyte count before and after its application to the periodontal pocket. Materials and Methods: Twenty patients, with CP and a pocket depth equal to or deeper than 4 mm, subjected to scaling, root planing, and PRP injection into the pocket. The lymphocyte count measured before an
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.
Background: Acrylic resin polymer s used in prosthodontic treatment as a denture base material for several decades. Separation and debonding of artificial teeth from denture bases present a laboratory and clinical problem affect patient and dentist. The aim of this study is to evaluate the effect of oxygen plasma and argon plasma treatment of acrylic teeth and thermocycling on bonding strength to hot cured acrylic resin denture base material. Materials and Methods: Sixty denture teeth (right maxillary central incisor) are selected. The denture teeth are waxed onto the beveled surface of rectangular wax block according to Japanese standard for artificial teeth. The control group consisted of 20 denture teeth specimen without any treatment.
... Show More