Preferred Language
Articles
/
ijp-226
Influence of non-thermal argon plasma needle on blood coagulation
...Show More Authors

Non-thermal argon plasma needle at atmospheric pressure was
constructed. The experimental setup was based on a simple and low
cost electric component that generates a sufficiently high electric
field at the electrodes to ionize the argon gas which flow at
atmospheric pressure. A high AC power supply was used with 1.1
kV and 19.57 kHz. Non-thermal Argon plasma used on blood
samples to show the ability of non-thermal plasma to promote blood
coagulation. Three tests have been done to show the ability of plasma
to coagulate both normal and anti-coagulant blood. Each blood
sample has been treated for varying time from 20sec. to 180sec. at
different distances. The results of the current study showed that the
cold plasma produced from argon significantly increase the in vitro
speed of blood coagulation, the plasma increases activation and
aggregation of platelets, causes proliferation of fibroblasts and fibrin
production accelerates blood coagulation.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue May 01 2012
Journal Name
Iraqi Journal Of Physics
Argon plasma needle source
...Show More Authors

Non thermal argon plasma needle at atmospheric pressure was generated. The experimental set up is based on very simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases, which flow at atmospheric pressure. The high d.c power supply is 7.5kV peak to peak, the frequency of the electrical field is 28kHz, and the plasma power less than 15W. The plasma is generated using only one electrode. In the present work the voltage and current discharge waveform are measured. Also the temperature of the working Ar gas at different gas flow and distances from the plasma electrode tip was recorded

View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Iraqi Journal Of Physics
The study of thermal description for non-thermal plasma needle system
...Show More Authors

Cold plasma is a relatively low temperature gas, so this feature enables us to use cold plasma to treat thermally sensitive materials including polymers and biologic tissues. In this research, the non-thermal plasma system is designed with diameter (3 mm, 10 mm) Argon at atmospheric pressure as well as to be suitable for use in medical and biotechnological applications.
The thermal description of this system was studied and we observed the effect of the diameter of the plasma needle on the plasma, when the plasma needle slot is increased the plasma temperature decrease, as well as the effect of the voltages applied to the temperature of the plasma, where the temperature increasing with increasing the applied voltage . Results showed t

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 05 2021
Journal Name
Iraqi Journal Of Science
The Effect of the Non-Thermal Plasma Needle on Pseudomonas Aeruginosa Bacteria
...Show More Authors

The development in the field of medical physics has led to the use of devices that
are manufactured under normal conditions to make tremendous progress in the
world of development in medical treatment by using these devices with modern
techniques by reducing the use of antibiotics and relying on these tools and devices
that link between physics and modern therapeutic medicine. In this research, a nonthermal
plasma system for argon gas operated at normal atmospheric pressure was
designed, this system was applied on Pseudomonas Aeruginosa bacteria isolated
from burn patients from Yarmouk Teaching Hospital. These bacteria were exposed
to this system, the results showed that these bacteria were killed at time (5 min)

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Iraqi Journal Of Science
The Study of Electrical Description for Non-Thermal Plasma Needle System
...Show More Authors

In this research, a non-thermal plasma system was designed and a non-thermal plasma needle was manufactured for argon gas operating at normal atmospheric pressure. The electrical description of this system studied by using two different values of voltages (4.9,8) kV. Where the results showed the small amount of electrical current consumed by the system of plasma needle up to several microns of amps, and the value of the electrical current increase with the increasing gas flow, as well as the results, showed that happen a breakdown voltage at (8) kV when gas flow (4 l/min) causing a slight decrease in the electrical current value.

View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Influence of Distance and Argon Flow rate on Pseudomonas aeruginosa Bacteria Exposed to Non thermal Plasma at Atmospheric Pressure
...Show More Authors

     In this research, a type of gram negative bacteria was exposed to non-thermal plasma at a distance of (2 and 3 cm) from the plasma flow nozzle, with the use of an alternating power supply (5KHz), where exposure was made at two different voltages (4.9 and 8 kV). A negative gram of Pseudomonas aeruginosa bacteria was isolated and exposed to non-thermal plasma at different flow rates of argon gas whose value ranged from (1-5) liters/minute. The results showed that bacterial killing rate is directly proportional to distance while exposing the samples to non-thermal plasma, and the best factors by which a complete killing rate was obtained were at a distance of 2 cm with a voltage of 8 kV and a gas flow rate of 5 liters/min,

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jun 04 2018
Journal Name
Baghdad Science Journal
Effects of Non-Thermal Argon Plasma Produced at Atmospheric Pressure on the Optical Properties of CdO Thin Films
...Show More Authors

In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma

View Publication Preview PDF
Scopus (19)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Influence of Non-Thermal Plasma (DBD) On Infertility Male Semen with Low Sperm Motility and Dna Damage
...Show More Authors

Non-thermal plasma(Dielectric barrier discharge) has many uses including living tissue sterilization, inactivation of the bacteria, excimer formation, angiogenesis, and surface treatment. This research aim is to use cold plasma as a tool to search the effect of the dielectric barrier discharge system at room temperature on human sperm motility and DNA integrity. This work was performed on 60 human semen samples suffering from low motility; each sample was prepared by centrifugation method, then each semen sample was divided into two sections, the first section is before significant exposure to the plasma system (DBD) and the second section is after treatment with the DBD system at ambient temperature. Before and after exposure to non-the

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees21gr
Effect of non-thermal plasma by FE-DBD scheme on lipids in blood in vivo study
...Show More Authors

This study illustrates the impact of non-thermal plasma (Cold Atmospheric Plasma CAP) on the lipids blood, the study in vivo. The lipids are (cholesterol, HDL-Cholesterol, LDL-Cholesterol and triglyceride) are tested. (FE-DBD) scheme of probe diameter 4cm is used for this purpose, and the output voltage ranged from (0-20) kV with variable frequency (0-30) kHz. The effect of non-thermal atmospheric plasma on lipids were studied with different exposure durations (20,30) sec. As a result, the longer plasma exposure duration decreases more lipids in blood.

View Publication
Scopus Crossref
Publication Date
Mon Feb 25 2019
Journal Name
Iraqi Journal Of Physics
Strain specificity in antimicrobial activity of non-thermal plasma
...Show More Authors

Non-thermal (low-temperature) plasma may act as an alternative approach to control superficial wound and skin infections when the effectiveness of chemical agents is weak due to natural pathogen or biofilm resistance. In this paper an atmospheric pressure plasma needle jet device which generates a cold plasma jet is used to measure the effectiveness of plasma treatment against different pathogenic bacteria and to test the individual susceptibility of pathogenic bacteria to non-thermal argon plasma. It is found that, Gram-negative bacteria were more susceptible to plasma treatment than Gram-positive bacteria. For the Gram-negative bacteria Pseudomonas aeruginosa, there were no survivors among the initial 1x108C.F.U (Co

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Mar 01 2013
Journal Name
International Journal Of Recent Research And Review
Influence of Discharge Pressure on the Plasma Parameter in a Planar Dc-Sputtering Discharge of Argon
...Show More Authors

Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.

Preview PDF