Mixed ligand complexes of bivalent metal ions, viz; Co(II), Ni(II), Cu(II) and Zn(II) of the composition [M(A)2((PBu3)2]in(1:2:2)(M:A:(PBu3). molar ratio, (where A- Anthranilate ion ,(PBu3)= tributylphosphine. M= Co(II),Ni(II),Cu(II) and Zn(II). The prepared complexes were characterized using flame atomic absorption, by FT-IR, UV/visible spectra methods as well as magnetic susceptibility and conductivity measurements. The metal complexes were tested in vitro against three types of pathogenic bacteria microorganisms: (Staphylococcus, Klebsiella SPP .and Bacillas)to assess their antimicrobial properties. Results. The study shows that all complexes have octahedral geometry; in addition, it has high activity against tested bacteria. Based on the reported results, it may be concluded that.The results showed that the deprotonated ligand(nthranilc acid ) to anthranilate ion (A-) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (−COO−), and the nitrogen atom of the amine group (-NH2), where the Tributylphosphine coordinated as a monodentate through the phosphor atom.
This paper presents the synthesis and study of some new mixed-liagnd complexes containing tow amino acids[Alanine(Ala) and phenylalanine (phe)] with some metals . The results products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubilty The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) . Ala = Alanine acid = C3H7NO2 Phe = phenylalanine = C9H11NO2
This paper presents the synthesis and study of some new mixed-ligand complexes containing anthranilic acid and amino acid phenylalanine (phe) with some metals . The resulting products were found to be solid crystalline complexes which have been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity . The proposed structure of the complexes using program , chem office 3D(2000) . The general formula have been given for the prepared complexes : [M(A-H)(phe-H)] M(II): Hg(II) , Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) . A = Anthranilic acid = C7H7NO2 Phe = phenylalanine = C9H11NO2
Thispaperpresentsthesynthesisandstudyofsomenewmixed-liagnd complexescontainingtowaminoacids[Alanine(Ala)andphenylalanine(phe)]withsome metals .Theresultsproductswerefoundtobesolidcrystallinecomplexeswhichhave been characterized by using (FT-IR,UV-Vis) spectra , melting point, elemental analysis (C.H.N) , molar conductivity and solubiltyThe proposed structure of the complexes using program , chem office 3D(2000) .The general formula have been given for the prepared complexes :[M(A-H)(phe-H)]M(II): Hg , Mn ,Co , Ni , Cu ) , Zn , Cd(II) .Ala = Alanine acid = C3H7NO2Phe = phenylalanine = C9H11NO2
Objective: The objectives of the present study were to evaluate the effectiveness of the instructional intervention
about medical and health knowledge of patients with diabetes mellitus type II.
Methodology: A Quasi- experimental study was carried out in National Center for Diabetes Mellitus/ Almustansria
University, started from 4th January 2012, to 1st April 2012. Non-probability (purposive sample) of (50) diabetes
mellitus type II, who visit National Center for Diabetes Mellitus/ Almustansria University. The study sample is
divided equally into (25) study and (25) control groups. The study group received the instructional intervention.
While the control not exposed to the instructional intervention. The data are coll
Hormones, their receptors, and the associated signaling pathways make compelling drug targets because of their wide-ranging biological significance to study the role of asprosin in obese male patients with diabetic mellitus type II. ELISA method was used to assay asprosin and insulin. Blood was taken with drawn sample from 30 obese normal patients with age range (40-60) years, 30 diabetic patients with age range (40-60) years at duration of disease (1-5) years and 30 normal healthy patients. The mean difference between T2DM according to insulin % (23.8±0.6) was increased than the mean of IFG (17.7±1.0) (P 0.000). The mean difference between T2DM according to asprosin (122.1±21.8) was increased than the mean of IFG (51.4±2.7) (P 0
... Show MoreForty one isolates of genus Proteus were collected from 140 clinical specimens such as urine, stool, wound, burn, and ear swabs from patients of both sex. These isolates were identified to three Proteus spp. P. mirabilis, P. vulgaris and P. penneri .The ability of these bacteria to produce L-asparaginase II by using semi quantitative and quantitative methods was determined. P. vulgaris Pv.U.92 was distinguished for high level of L-asparaginase II production with specific activity 1.97 U/mg. Optimum conditions for enzyme production were determined; D medium with 0.3% of L-asparagine at pH 7.5 with temperature degree 35°C for incubation. Ultrasonication was used to destroy the P. vulgaris Pv.U.92 cells then ASNase II was extracted and pu
... Show MoreIn an earlier paper, the basic analytical formula for particle-hole nuclear state densities was derived for non-Equidistant Spacing Model (non-ESM) approach. In this paper, an extension of the former equation was made to include pairing. Also a suggestion was made to derive the exact formula for the particle-hole state densities that depends exactly on Fermi energy and nuclear binding energies. The results indicated that the effects of pairing reduce the state density values, with similar dependence in the ESM system but with less strength. The results of the suggested exact formula indicated some modification from earlier non-ESM approximate treatment, on the cost of more calculation time
Abstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show MoreCopper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the
... Show More