This paper proposes a new method to tune a fractional order PID controller. This method utilizes both the analytic and numeric approach to determine the controller parameters. The control design specifications that must be achieved by the control system are gain crossover frequency, phase margin, and peak magnitude at the resonant frequency, where the latter is a new design specification suggested by this paper. These specifications results in three equations in five unknown variables. Assuming that certain relations exist between two variables and discretizing one of them, a performance index can be evaluated and the optimal controller parameters that minimize this performance index are selected. As a case study, a third order linear time invariant system is taken as a process to be controlled and the proposed method is applied to design the controller. The resultant control system exactly fulfills the control design specification, a feature that is laked in numerical design methods. Through matlab simulation, the step response of the closed loop system with the proposed controller and a conventional PID controller demonstrate the performance of the system in terms of time domain transient response specifications (rise time, overshoot, and settling time).
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
In this paper we shall prepare an sacrificial solution for fuzzy differential algebraic equations of fractional order (FFDAEs) based on the Adomian decomposition method (ADM) which is proposed to solve (FFDAEs) . The blurriness will appear in the boundary conditions, to be fuzzy numbers. The solution of the proposed pattern of equations is studied in the form of a convergent series with readily computable components. Several examples are resolved as clarifications, the numerical outcomes are obvious that the followed approach is simple to perform and precise when utilized to (FFDAEs).
This paper presents a new design of a nonlinear multi-input multi-output PID neural controller of the active brake steering force and the active front steering angle for a 2-DOF vehicle model based on modified Elman recurrent neural. The goal of this work is to achieve the stability and to improve the vehicle dynamic’s performance through achieving the desired yaw rate and reducing the lateral velocity of the vehicle in a minimum time period for preventing the vehicle from slipping out the road curvature by using two active control actions: the front steering angle and the brake steering force. Bacterial forging optimization algorithm is used to adjust the parameters weights of the proposed controller. Simulation resul
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show MoreArtificial pancreas is simulated to handle Type I diabetic patients under intensive care by automatically controlling the insulin infusion rate. A Backstepping technique is used to apply the effect of PID controller to blood glucose level since there is no direct relation between insulin infusion (the manipulated variable) and glucose level in Bergman’s system model subjected to an oral glucose tolerance test by applying a meal translated into a disturbance. Backstepping technique is usually recommended to stabilize and control the states of Bergman's class of nonlinear systems. The results showed a very satisfactory behavior of glucose deviation to a sudden rise represented by the meal that increase the blood glucose
... Show More
Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio
... Show MoreThis paper presents a linear fractional programming problem (LFPP) with rough interval coefficients (RICs) in the objective function. It shows that the LFPP with RICs in the objective function can be converted into a linear programming problem (LPP) with RICs by using the variable transformations. To solve this problem, we will make two LPP with interval coefficients (ICs). Next, those four LPPs can be constructed under these assumptions; the LPPs can be solved by the classical simplex method and used with MS Excel Solver. There is also argumentation about solving this type of linear fractional optimization programming problem. The derived theory can be applied to several numerical examples with its details, but we show only two examples
... Show MoreThis study presents the execution of an iterative technique suggested by Temimi and Ansari (TA) method to approximate solutions to a boundary value problem of a 4th-order nonlinear integro-differential equation (4th-ONIDE) of the type Kirchhoff which appears in the study of transverse vibration of hinged shafts. This problem is difficult to solve because there is a non-linear term under the integral sign, however, a number of authors have suggested iterative methods for solving this type of equation. The solution is obtained as a series that merges with the exact solution. Two examples are solved by TA method, the results showed that the proposed technique was effective, accurate, and reliable. Also, for greater reliability, the approxim
... Show MoreThis work is concerned with designing two types of controllers, a PID and a Fuzzy PID, to be used
for flying and stabilizing a quadcopter. The designed controllers have been tuned, tested, and
compared using two performance indices which are the Integral Square Error (ISE) and the Integral
Absolute Error (IAE), and also some response characteristics like the rise time, overshoot, settling
time, and the steady state error. To try and test the controllers, a quadcopter mathematical model has
been developed. The model concentrated on the rotational dynamics of the quadcopter, i.e. the roll,
pitch, and yaw variables. The work has been simulated with “MATLAB”. To make testing the
simulated model and the controllers m
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.