Recently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
Background: Asymmetry assessment is an important component of orthodontic diagnosis and treatment planning. Several studies attempted to find the relationship between craniometric asymmetry and skeletal jaws relationship and many authors found some extent of asymmetry in individuals with normal jaws relationship. The use of Computed tomography (CT) allows for the assessment of asymmetry on a dimensionally accurate volumetric image, aim of the study is to determine if there are differences in craniometric asymmetry between patient with skeletal class I and patients with skeletal class II relationship using Helical CT scan. Materials and Methods: Ninety individuals with clinically symmetrical faces were imaged with Helical CT scan, and aging
... Show MoreThis paper discusses reliability of the stress-strength model. The reliability functions ð‘…1 and ð‘…2 were obtained for a component which has an independent strength and is exposed to two and three stresses, respectively. We used the generalized inverted Kumaraswamy distribution GIKD with unknown shape parameter as well as known shape and scale parameters. The parameters were estimated from the stress- strength models, while the reliabilities ð‘…1, ð‘…2 were estimated by three methods, namely the Maximum Likelihood, Least Square, and Regression.
A numerical simulation study a comparison between the three estimators by mean square error is performed. It is found that best estimator between
... Show MoreIn this paper introduce some generalizations of some definitions which are, closure converge to a point, closure directed toward a set, almost ω-converges to a set, almost condensation point, a set ωH-closed relative, ω-continuous functions, weakly ω-continuous functions, ω-compact functions, ω-rigid a set, almost ω-closed functions and ω-perfect functions with several results concerning them.
We dealt with the nature of the points under the influence of periodic function chaotic functions associated functions chaotic and sufficient conditions to be a very chaotic functions Palace
This paper is concerned with introducing an explicit expression for orthogonal Boubaker polynomial functions with some important properties. Taking advantage of the interesting properties of Boubaker polynomials, the definition of Boubaker wavelets on interval [0,1) is achieved. These basic functions are orthonormal and have compact support. Wavelets have many advantages and applications in the theoretical and applied fields, and they are applied with the orthogonal polynomials to propose a new method for treating several problems in sciences, and engineering that is wavelet method, which is computationally more attractive in the various fields. A novel property of Boubaker wavelet function derivative in terms of Boubaker wavelet themsel
... Show MoreThe theory of the psychologist’s Piaget states that man passes through four stages; other says that mankind passes through five. At each stage, human learn new characteristics, values, skills, and cultures from different environment that differ from one society to another. Therefore, the cultures of societies vary according to the diversity of the environments. These environments also vary depending on the circumstances surrounding them, e.g., in war environment, the individual learns what he does not learn from living in safe environment. As the environment changes, the communicative message also changes. This message is subject to person, groups, organizations and parties and directed to a diverse audience in its orientations and bel
... Show MoreThe aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
The main goal of this paper is to study applications of the fractional calculus techniques for a certain subclass of multivalent analytic functions on Hilbert Space. Also, we obtain the coefficient estimates, extreme points, convex combination and hadamard product.
This study deals with a prominent critical term - poetics - in critical studies as an area related to uncovering the laws of creative and aesthetic discourses (Preaching)، and the various functions that accompany it in literary texts. So، the study employs the pioneers' works of this theory specially the eastern theorists in making a parallel comparing study of the text book of " the Magic and Poetry” by Al-Lisan Al-Din bin Al-Khatib (776 AH). It displays the utility of the concept of poetics in the referred book pointing to the illumination of various functions that، in turn، reflected the
In this article, we introduced a new concept of mappings called δZA - Quasi contractive mapping and we study the K*- iteration process for approximation of fixed points, and we proved that this iteration process is faster than the existing leading iteration processes like Noor iteration process, CR -iteration process, SP and Karahan Two- step iteration process for 𝛿𝒵𝒜 − quasi contraction mappings. We supported our analytic proof by a numerical example.