Denture bases are fabricated routinely using Poly(methyl methacrylate) (PMMA) acrylic resin. Yet, it is commonly known for its major drawbacks such as insufficient strength and ductility. The purpose of this study was to improve the performance of PMMA acrylic resin as a denture base material by reinforcement with surface treated lithium disilicate glass ceramic powder. The ceramic powder was prepared by grinding and sieving IPS e.max CAD MT blocks. Then, the powder was surface treated with an organosilane coupling agent (TMSPM) and added to PMMA in amount of 1%, 3%, 5% and 7% by weight. Characterizations of the powder was done by particle size analysis, XRD and FTIR. Transverse strength, Impact strength, Shore D hardness and surface roughness were tested for the prepared composites and neat PMMA. Particle size analysis showed that the average particle diameter was 1.46 µm. XRD confirmed the microstructure of IPS e.max CAD MT. FTIR showed the presence of TMSPM functional groups in the powder after treatment and there was a chemical interaction between the treated powder and the PMMA after the addition. One-way ANOVA and Tukey’s HSD test showed that there was a highly significant increase (P < 0.01) in transverse strength, impact strength and hardness with non-significant increase in roughness for 1% group. The mean values of 1% group were 67.3 MPa for transverse strength, 5.21 kJ/m2 for impact strength, 89.8 for Shore D hardness and 1.22 µm for surface roughness. While for control group, mean values were 59.3 MPa for transverse strength, 3.74 kJ/m2 for impact strength, 87.1 for Shore D hardness and 1.1 µm for surface roughness. However, with higher amounts of powder, there was a highly significant decrease in transverse strength and increase in roughness which was considered undesirable. In conclusion, reinforcing PMMA denture base material with 1% lithium disilicate glass ceramic powder may have the potential for enhancing the clinical performance of this material.
In this research investigation, a total of eighteen diverse tetra- and penta-lateral cyclic compounds were synthesized. These included 1,3,4-thiadiazole, thiazolidin-4-one (via an alternative method), 1,2,4-triazole, carbothioamide, thiazole-4-one, azetidin-2-one, and oxazole. The synthesis procedure entailed a sequence of reactions. The thiazolidine-4-one 1 was obtained by reaction p-aminobenzoic acid with thiosemicarbazide, followed by treatment with p-tolualdehyde to produce Schiff base 2. Reaction Schiff base 2 with mercaptoacetic acid in dry benzene was carried out to produce thiazolidine-4-one 3. In another synthesis pathway, the esterification of p-nitro benzoic acid with ethanol in the presence of sulfuric acid was
... Show MoreABSTRACT Porous silicon has been produced in this work by photochemical etching process (PC). The irradiation has been achieved using ordinary light source (150250 W) power and (875 nm) wavelength. The influence of various irradiation times and HF concentration on porosity of PSi material was investigated by depending on gravimetric measurements. The I-V and C-V characteristics for CdS/PSi structure have been investigated in this work too.
Improved oral bioavailability of lipophilic substances can be achieved using self-emulsifying drug delivery systems. However, because the properties of self-emulsifying are greatly influenced by surfactant amount and type, type of oil used, droplet size, charge, cosolvents, and physiological variables, the synthesis of self-emulsifying is highly complex; consequently, only a small number of excipient self-emulsifying formulations has been developed so far for clinical use. This study reports a highly effective procedure for developing self-emulsifying formulations using a novel approach based on the hydrophilic-lipophilic difference theory. Microemulsion characteristics, such as the constituents and amounts of oil and surfactant electrolyte
... Show MoreMarkov chains are an application of stochastic models in operation research, helping the analysis and optimization of processes with random events and transitions. The method that will be deployed to obtain the transient solution to a Markov chain problem is an important part of this process. The present paper introduces a novel Ordinary Differential Equation (ODE) approach to solve the Markov chain problem. The probability distribution of a continuous-time Markov chain with an infinitesimal generator at a given time is considered, which is a resulting solution of the Chapman-Kolmogorov differential equation. This study presents a one-step second-derivative method with better accuracy in solving the first-order Initial Value Problem
... Show MoreMassive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine
... Show MoreIn this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show MoreTernary polymer blend of chitosan/poly vinyl alcohol/ poly vinyl pyrrolidone was prepared by solution castingmethod, nanocomposite was prepared by sonication method with nano Ag and Zn. All prepared compounds have been characterizedby FT-IR, SEM, DSC, as well as Biological activity. Antimicrobialactivity related to prepared blendsand Nanocomposites againstsix types of bacteria namely, Staphylococcus aureas, E. faecalis, S.typhi, P. aeruginosa, Bacillus subtilis, Escherichia coli andC. albicans fungal were examined and evaluated. The results reveal that the prepared polymer blends and nanocompositeshavegood antimicrobial activity against all kinds of microbials.
In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in
In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in