The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur significant error when applied for unconventional tight gas reservoirs. The implementation of multi-tank, compartmented reservoir models are reported to better represent the behaviour of tight gas reservoirs. This study focus to develop a simple numerical method to solve the MBE using the concept of multi-tank, compartmented reservoir model. A simple and practical computational tool is developed by solving the numerical model using False Position iterative method. The tool is applied to calculate GIIP and UR factor for an Australian tight gas field after validation of tool based on history matching. The results demonstrated that the developed tool can be used for the better estimation of GIIP and UR factor with better accuracy. The program can also be used as an efficient tool, especially in the case of homogenous tight gas reservoir, as an alternative to the reservoir simulation to understand the pressure decline behaviour with cumulative gas production; and to estimate GIIP and UR factor.
Massive multiple-input multiple-output (massive-MIMO) is a promising technology for next generation wireless communications systems due to its capability to increase the data rate and meet the enormous ongoing data traffic explosion. However, in non-reciprocal channels, such as those encountered in frequency division duplex (FDD) systems, channel state information (CSI) estimation using downlink (DL) training sequence is to date very challenging issue, especially when the channel exhibits a shorter coherence time. In particular, the availability of sufficiently accurate CSI at the base transceiver station (BTS) allows an efficient precoding design in the DL transmission to be achieved, and thus, reliable communication systems can be obtaine
... Show MoreIMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
Resource estimation is an essential part of reservoir evaluation and development planning which highly affects the decision-making process. The available conventional logs for 30 wells in Nasiriyah oilfield were used in this study to model the petrophysical properties of the reservoir and produce a 3D static geological reservoir model that mimics petrophysical properties distribution to estimate the stock tank oil originally in place (STOOIP) for Mishrif reservoir by volumetric method. Computer processed porosity and water saturation and a structural 2D map were utilized to construct the model which was discretized by 537840 grid blocks. These properties were distributed in 3D Space using sequential Gaussian simulation and the variation in
... Show MoreCitrus fruit contain variety of flavonoids such as Hesperidin (the principal flavonoid in oranges and grapefruit). Hesperidin is found in high concentration in fruit peel of oranges and in substantially lower concentration in juice of these fruits. Hesperidin was extracted from oranges peel by treating the peels with calcium hydroxide. HPLC technique was used to determine hesperidin. Hesperidin was saperated and purified in a purity of about 90.1-95.7% and yield about 1.5 %w/w from oranges peel dry powder. Both hesperidin and oranges peel extract showed significan antibacterial activity. Sensitivity to hesperidin and oranges peel extracts were not similar for the chosen bacteriaCrude orange peel extract gave a various antimicro
... Show MoreIn this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system.
... Show MoreSlag of aluminum is a residue which results during the melting process of primary and secondary aluminum production. Salt slag of aluminum is hazardous solid waste according to the European Catalogue for Hazardous Wastes. Hence, recovery of aluminum not only saves the environment, but also has advantages of financial and economic returns. In this research, aluminum was recovered and purified from the industrial wastes generated as waste from both of State Company for Electrical and Electronic Industries (Baghdad/AlWaziriya) and General Company for Mechanical Industries (Babylon/-Al-Escandria). It was found that these wastes contain tiny proportions of other elements such as iron, copper, nickel, titanium, lead, and potassium. Wastes were
... Show MoreAn analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
The aim of this research was to estimate the production function to measure returns to scale and distribution efficiency of resources used in the production of wheat. Cross sectional data used of a random sample of 130 farmers in Dhi Qar Province. The results of the quantitative analysis of estimating production function showed that the double logarithmic form was the best estimated model based on economic and statistical indicators. However, that form suffered from heteroscedasticity and autocorrelation, so the robust regression technique was chosen. Value of returns to scale was 0.89 and this indicates decreasing returns to scale. This means that production function is in the second stage of the function. The results of the dist
... Show MoreThis paper discusses reliability R of the (2+1) Cascade model of inverse Weibull distribution. Reliability is to be found when strength-stress distributed is inverse Weibull random variables with unknown scale parameter and known shape parameter. Six estimation methods (Maximum likelihood, Moment, Least Square, Weighted Least Square, Regression and Percentile) are used to estimate reliability. There is a comparison between six different estimation methods by the simulation study by MATLAB 2016, using two statistical criteria Mean square error and Mean Absolute Percentage Error, where it is found that best estimator between the six estimators is Maximum likelihood estimation method.