Leishmaniasis is endemic ofIraq in both cutaneous and visceral form. The available tools for diagnosis and detection of Leishmaniaare nonspecific and may interfere with other species. In this study, Polymerase Chain Reaction (PCR) has been used to identify Iraqi isolate of visceral leishmaniasis (MHOM/ IQ/2005/MRU15) which a previously diagnosed by classical serological tests. PCR amplificationwas carried out using species-specific primers of Leishmania donovani. Four primer pairs of mini-circle DNA and ITS-1 were used.13A/13B, which is used to identify Leishmaniaas a genus, NM12, LITSR/L5.8S and BHUL18S, were used to detect the sub species of L. donovani.The result ofPCR amplification of 13A/13BkDNA revealed that a band of ~ 120 bp. NM12, LITSR/L5.8Sand BHUL18S primer pairs demonstrated bands of 204 bp, 320 bpand 311 bp, respectively. Theresultsof this study arerecommended to be used foridentification ofvisceral leishmaniasis identification instead of time consuming and non-specific classical methods.
Abstract
For sparse system identification,recent suggested algorithms are -norm Least Mean Square (
-LMS), Zero-Attracting LMS (ZA-LMS), Reweighted Zero-Attracting LMS (RZA-LMS), and p-norm LMS (p-LMS) algorithms, that have modified the cost function of the conventional LMS algorithm by adding a constraint of coefficients sparsity. And so, the proposed algorithms are named
-ZA-LMS,
The study included the investigation of fungi which associated with heavy animal's leather (Cows and Buffalos) and light (Sheep’s and Goats )through different processing stages (raw hides ,dehairing ,pickling,chrome tanned and stainning or finished stages)there were 10 genera and 25 species in addition to sterile fungi associated with animal leathers which included Alternaria ,Aspergillus,Cladosporium,Fusarium, Mucor , Penicillium , Rhizopus , and Trichoderma .Aspergillus and Penicillium have observed in all leather samples and different processing stages, and that the first time isolate two genera Helminthosporium , Stemphylium form leather for staining stage.
Background: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThe aim of this stud to isolate and identified of A. fumigatus from different sources and study the genetic diversity among these isolates by using RAPD and ISSR markers.Collected 20 samples from 7samples were isolated A. fumigatusisolates were characterized depending on its morphological, then extracted DNA from its.RAPD markersrandomly bandingwith sitesof genome more than ISSR markers where the primer OPN-07 achieved discriminative power (19.1) and 43 bands, while ISSR6 achieved discriminative power (17.1) with 32 bands.ISSR were more efficiency in specific binding then RAPD, ISSR primers has great a binding to production unique band, when 9 primers from 01 primers, ISSR9 was produce (5) unique bands, while RAPD markers was low ability
... Show MoreGram-positive enterococciare opportunistic and resistant to many antibiotics. This study aimed to investigate the presence of Enterococcus spp. in our community and whether these isolates are resistant to the macrolides class of antibiotics. Fifty isolates from 112 clinical samples were recognized as Enterococcus spp. and confirmed using Vitek-2 system. The current study found that 50/112 (44.6%) represented the total isolates, 38/50 (76%) of which were Enterococcus faecalis, while 12/50 (24%) were Enterococcus faecium, twenty (40%) isolates from root canals and 30 (60%) isolates from urine were isolated. The sensitivity of the enterococcal isolates to various macrolides (erythromycin, azithromycin and clarithromycin) antibiotics wa
... Show MoreThis study aimed to detect Anaplasma phagocytophilum in horses through hematological and molecular tests. The 16S rRNA gene of the Anaplasma phagocytophilum parasite was amplified by polymerase chain reaction (PCR), then sequenced, and subjected to phylogenetic analysis to explore "Equine Granulocytic Anaplasmosis" (EGA) infection in three important gathering race horses areas in Baghdad governorate, Iraq. Blood samples were obtained from 160 horses of varying ages, three breeds, and both sexes, between January and December 2021. Prevalence and risk variables for anaplasmosis were analyzed using statistical odds ratio and chi-square tests. Results demonstrated that clinical anaplasmosis symptoms comprised jaundice, wei
... Show MoreOne of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More