Elzaki Transform Adomian decomposition technique (ETADM), which an elegant combine, has been employed in this work to solve non-linear Riccati matrix differential equations. Solutions are presented to demonstrate the relevance of the current approach. With the use of figures, the results of the proposed strategy are displayed and evaluated. It is demonstrated that the suggested approach is effective, dependable, and simple to apply to a range of related scientific and technical problems.
The Korteweg-de Vries equation plays an important role in fluid physics and applied mathematics. This equation is a fundamental within study of shallow water waves. Since these equations arise in many applications and physical phenomena, it is officially showed that this equation has solitary waves as solutions, The Korteweg-de Vries equation is utilized to characterize a long waves travelling in channels. The goal of this paper is to construct the new effective frequent relation to resolve these problems where the semi analytic iterative technique presents new enforcement to solve Korteweg-de Vries equations. The distinctive feature of this method is, it can be utilized to get approximate solutions for travelling waves of
... Show MoreDegenerate parabolic partial differential equations (PDEs) with vanishing or unbounded leading coefficient make the PDE non-uniformly parabolic, and new theories need to be developed in the context of practical applications of such rather unstudied mathematical models arising in porous media, population dynamics, financial mathematics, etc. With this new challenge in mind, this paper considers investigating newly formulated direct and inverse problems associated with non-uniform parabolic PDEs where the leading space- and time-dependent coefficient is allowed to vanish on a non-empty, but zero measure, kernel set. In the context of inverse analysis, we consider the linear but ill-pose
In this paper, we introduce and discuss an algorithm for the numerical solution of some kinds of fractional integral and fractional integrodifferential equations. The algorithm for the numerical solution of these equations is based on iterative approach. The stability and convergence of the fractional order numerical method are described. Finally, some numerical examples are provided to show that the numerical method for solving the fractional integral and fractional integrodifferential equations is an effective solution method.
This work describes two efficient and useful methods for solving fractional pantograph delay equations (FPDEs) with initial and boundary conditions. These two methods depend mainly on orthogonal polynomials, which are the method of the operational matrix of fractional derivative that depends on Bernstein polynomials and the operational matrix of the fractional derivative with Shifted Legendre polynomials. The basic procedure of this method is to convert the pantograph delay equation to a system of linear equations and by using, the operational matrices we get rid of the integration and differentiation operations, which makes solving the problem easier. The concept of Caputo has been used to describe fractional derivatives. Finally, some
... Show MoreFuture wireless systems aim to provide higher transmission data rates, improved spectral efficiency and greater capacity. In this paper a spectral efficient two dimensional (2-D) parallel code division multiple access (CDMA) system is proposed for generating and transmitting (2-D CDMA) symbols through 2-D Inter-Symbol Interference (ISI) channel to increase the transmission speed. The 3D-Hadamard matrix is used to generate the 2-D spreading codes required to spread the two-dimensional data for each user row wise and column wise. The quadrature amplitude modulation (QAM) is used as a data mapping technique due to the increased spectral efficiency offered. The new structure simulated using MATLAB and a comparison of performance for ser
... Show MoreFuture wireless communication systems must be able to accommodate a large number of users and simultaneously to provide the high data rates at the required quality of service. In this paper a method is proposed to perform the N-Discrete Hartley Transform (N-DHT) mapper, which are equivalent to 4-Quadrature Amplitude Modulation (QAM), 16-QAM, 64-QAM, 256-QAM, … etc. in spectral efficiency. The N-DHT mapper is chosen in the Multi Carrier Code Division Multiple Access (MC-CDMA) structure to serve as a data mapper instead of the conventional data mapping techniques like QPSK and QAM schemes. The proposed system is simulated using MATLAB and compared with conventional MC-CDMA for Additive White Gaussian Noise, flat, and multi-path selective fa
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database
The technique of integrate complimentary details from two or more input images is known as image fusion. The fusion image is more informational and will be complete more than any of the original input images. This paper Illustrates implementation and evaluation of fusion techniques used on the Satellite images a high-resolution Panchromatic (Pan) and Multispectral (MS). A new algorithm is proposed to fuse a Pan and MS of the lowresolution images based on combining IHS and Haar wavelet transform.Firstly, this paper clarifies the classical fusion by using IHS transform and Haar wavelet transform individually. Secondly proposition new strategy of combining the two methods. Performance of the proposed method is evalua
... Show More