Preferred Language
Articles
/
oxeSMJMBVTCNdQwCSM58
Using Artificial Intelligence and Metaverse Techniques to Reduce Earning Management

This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of data, cost savings, and the pace of business completion. Therefore, relying on auditing a large volume of financial data is insufficient. The Metaverse is a novel technological advancement seeking to fundamentally transform corporate operations and interpersonal interactions. Metaverse has implications for auditing and accounting practices, particularly concerning a company’s operational and financial aspects. Economic units have begun to switch from traditional methods of registration and posting to using software for financial operations to limit earnings management. Therefore, this research proposes applying one of the Data Mining techniques, namely the logistical regression technique, to reduce earning management in a sample of Iraqi private banks, including (11) banks. Accounting ratios were employed, followed by Logistic Regression, to achieve earnings management within the proportions.

Scopus Crossref
View Publication
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Using Project Management Maturity Model to Evaluate Construction Sector -Organizations. Case Study at the Department of buildings - Karkh first

The education sector suffers from many problems, including the scarcity of schools that can absorb the increasing number of students in light of the increasing population growth rate, as some regions suffer from a lack of opening of new schools or the expansion of existing schools to increase their capacity so that attention is required. The research sought to identify the level of maturity of project management at the research site (Building Department in Al-Karkh I/ Ministry of Education) Being responsible for educational projects and their implementation and to know that, the ten areas of the knowledge guide to project management PMBOK have been adopted according to the PM3 model (one of the models of maturity

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Dec 06 2019
Journal Name
Ssociation Of Arab Universities Journal Of Engineering Sciences
Application of Artificial Neural Network and GeographicalInformation System Models to Predict and Evaluate the Quality ofDiyala River Water, Iraq

This research discusses application Artificial Neural Network (ANN) and Geographical InformationSystem (GIS) models on water quality of Diyala River using Water Quality Index (WQI). Fourteen water parameterswere used for estimating WQI: pH, Temperature, Dissolved Oxygen, Orthophosphate, Nitrate, Calcium, Magnesium,Total Hardness, Sodium, Sulphate, Chloride, Total Dissolved Solids, Electrical Conductivity and Total Alkalinity.These parameters were provided from the Water Resources Ministryfrom seven stations along the river for the period2011 to 2016. The results of WQI analysis revealed that Diyala River is good to poor at the north of Diyala provincewhile it is poor to very polluted at the south of Baghdad City. The selected parameters wer

... Show More
Publication Date
Fri May 20 2022
Journal Name
Eai Endorsed Transactions On Internet Of Things
APP innovation to Control Projects Risks Management during Crises

The goal of this study is to build an application that can be used in difficult cases and sudden circumstances during the pandemic and post-disaster state, which can be the development of digital risk management and mitigating the difficult impact of the epidemic through the improvement of IT and IoT that can be fine by finding initial solutions and make the world like a digital city that could be managed by the network. We provide this study to gain an overview of reasons for delayed and exceeded costs in a select of thirty Iraqi case projects by controlling the time and cost. The drivers of delay have been investigated in multiple countries/contexts. however, there is little country data available under the conditions that have ch

... Show More
Crossref (2)
Crossref
View Publication
Publication Date
Sun Dec 30 2018
Journal Name
Baghdad Science Journal
Geomorphological Mapping of Razzaza–Habbaria Area using Remote Sensing Techniques

Landforms on the earth surface are so expensive to map or monitor. Remote Sensing observations from space platforms provide a synoptic view of terrain on images. Satellite multispectral data have an advantage in that the image data in various bands can be subjected to digital enhancement techniques for highlighting contrasts in objects for improving image interpretability. Geomorphological mapping involves the partitioning of the terrain into conceptual spatial entities based upon criteria. This paper illustrates how geomorphometry and mapping approaches can be used to produce geomorphological information related to the land surface, landforms and geomorphic systems. Remote Sensing application at Razzaza–Habbaria area southwest of Razz

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Intelligent Age Estimation From Facial Images Using Machine Learning Techniques

     Lately, a growing interest has been emerging in age estimation from face images because of the wide range of potential implementations in law enforcement, security control, and human computer interactions. Nevertheless, in spite of the advances in age estimation, it is still a challenging issue. This is due to the fact that face aging process is not only set by distinct elements, such as genetic factors, but by extrinsic factors, such as lifestyle, expressions, and environment as well. This paper applied machine learning technique to intelligent age estimation from facial images using J48 classifier on FG_NET dataset. The proposed work consists of three phases; the first phase is image preprocessing which include

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Improving Accuracy in Human Age Classification Using Ensemble Learning Techniques

     Age is a predominant parameter for arbitrating an individual, for security and access concerns of the data that exist in cyber space. Nowadays we find a rapid growth in unethical practices from youngsters as well as skilled cyber users. Facial image renders a variety of information that can be used, when processed to ascertain the age of individuals. In this paper, local facial features are considered to predict the age group, where local Binary Pattern (LBP) is extracted from four regions of facial images. The prominent areas where wrinkles are developed naturally in human as age increases are taken for feature extraction. Further these feature vectors are subjected to  ensemble techniques that increases th

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
The Prediction of COVID 19 Disease Using Feature Selection Techniques
Abstract<p>COVID 19 has spread rapidly around the world due to the lack of a suitable vaccine; therefore the early prediction of those infected with this virus is extremely important attempting to control it by quarantining the infected people and giving them possible medical attention to limit its spread. This work suggests a model for predicting the COVID 19 virus using feature selection techniques. The proposed model consists of three stages which include the preprocessing stage, the features selection stage, and the classification stage. This work uses a data set consists of 8571 records, with forty features for patients from different countries. Two feature selection techniques are used in </p> ... Show More
Scopus (19)
Crossref (14)
Scopus Crossref
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Taibah University Medical Sciences
Preparing polycaprolactone scaffolds using electrospinning technique for construction of artificial periodontal ligament tissue

Objectives The strategies of tissue-engineering led to the development of living cell-based therapies to repair lost or damaged tissues, including periodontal ligament and to construct biohybrid implant. This work aimed to isolate human periodontal ligament stem cells (hPDLSCs) and implant them on fabricated polycaprolactone (PCL) for the regeneration of natural periodontal ligament (PDL) tissues. Methods hPDLSCs were harvested from extracted human premolars, cultured, and expanded to obtain PDL cells. A PDL-specific marker (periostin) was detected using an immunofluorescent assay. Electrospinning was applied to fabricate PCL at three concentrations (13%, 16%, and 20% weight/volume) in two forms, which were examined through field emission

... Show More
Scopus (17)
Crossref (5)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 18 2023
Journal Name
Journal Of Engineering
Spatial Prediction of Monthly Precipitation in Sulaimani Governorate using Artificial Neural Network Models

ANN modeling is used here to predict missing monthly precipitation data in one station of the eight weather stations network in Sulaimani Governorate. Eight models were developed, one for each station as for prediction. The accuracy of prediction obtain is excellent with correlation coefficients between the predicted and the measured values of monthly precipitation ranged from (90% to 97.2%). The eight ANN models are found after many trials for each station and those with the highest correlation coefficient were selected. All the ANN models are found to have a hyperbolic tangent and identity activation functions for the hidden and output layers respectively, with learning rate of (0.4) and momentum term of (0.9), but with different data

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Feb 27 2018
Journal Name
Iraqi Journal Of Laser
Investigation of Densified SiO2 Sol-Gel Thin Films Using Conventional and DPSS Laser Techniques

The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).

View Publication Preview PDF