A fluorescence microscopy considered as a powerful imaging tool in biology and medicine. In addition to useful signal obtained from fluorescence microscopy, there are some defects in its images such as random variation in brightness, noise that caused by photon detection and some background pixels in the acquired fluorescence microscopic images appear wrongly auto-fluorescence property. All these practical limitations have a negative impact on the correct vision and analysis of the fluorescent microscope users. Our research enters the field of automation of image processing and image analysis using image processing techniques and applying this processing and analysis on one of the very important experiments in biology science. This research is devoted to develop a system based on digital image processing methodology to localize and assess the concentration of saponins accumulation in plant tissues using Fluorescence microscopic image. The proposed system involved preprocessing steps than to make the region of interest more obvious and reflects the saponins accumulation area. Also, the system introduces a simple mathematical way for concentration assessment, and it was justified through the test results. It includes building a system to get microscopic images with best appearance and no defects. It determines the saponins accumulation sites in leaves, rhizomes and shoot apex of Y. gloriosa Variegata and their in vitro cultured tissues (Calli, direct and indirect regenerated shoots and rhizomes/roots). Statistical analysis is performed using a computer to get the mean and median of saponins intensities in each part, and finally perform a comparison between them to determine which part can record the highest intensity level of saponins. The results showed high ability of the system to determine the locations and intensity of saponins in the different parts of the plant. It performs the statistical analysis very quickly. In in vitro culture, it was found that callus treated with Thidiazuron (TDZ) in a combination with benzyl aminopurine (BA) and naphthyl acetic acid (NAA) after 3 weeks of culture had the highest level of saponins accumulation, while the leaves of intact plant recorded the second highest accumulation of saponins.
In this work, pure and Ag-doped nickel oxide (NiO) thin films were deposited on glass substrates with different dopant concentrations (0.1, 0.2, 0.3 and 0.4 wt.%) by pulsed-laser deposition (PLD) technique at room temperature. These films were annealed at temperature of 450 °C. The structural and optical properties of the prepared thin films were studied. It was found that annealing process has lead to increase the transmittance of the deposited films. Also, the transmittance was found to increase with doping concentration of silver in the deposited NiO films. The optical energy gap was decreased from 3.5 to 3.2 eV as the doping concentration was increased to 0.4 %.
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
A comparative study was done on the adsorption of methyl orange dye (MO) using non-activated and activated corn leaves with hydrochloric acid as an adsorbent material. Scanning electron microscopy (SEM) and Fourier Transform Infrared spectroscopy (FTIR) were utilized to specify the properties of adsorbent material. The effect of several variables (pH, initial dye concentration, temperature, amount of adsorbent and contact time) on the removal efficiency was studied and the results indicated that the adsorption efficiency increases with the increase in the concentration of dye, adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature for both the treated and untreated corn leaves. The equi
... Show MoreThis article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreCr2O3 thin films have been prepared by spray pyrolysis on a glass substrate. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm before and after annealing. The effects of annealing temperature on absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant and optical conductivity were expected. It was found that all these parameters increase as the annealing temperature increased to 550°C.
The purpose of this study was to determine the influence of environmental pH on production of biofilms and virulence genes expression in Pseudomonas aeruginosa.
Among 303 clinical and environmental samples 109 (61 + 48) isolates were identified as clinical and environmental P. aeruginosa isolates, respectively. Clinical samples were obtained from patients in the Al-Yarmouk hospital in Baghdad city, Iraq. Waste water from Al-Yarmouk hospital was used from site before treatment unit to collect environmental samples. The ability of prod
The current study discusses one of the most important modern schools in art, and it studies its impact on contemporary Iraqi art, particularly in the art of pottery because of its association to the utilitarian function. However, this study demonstrated that pottery is a unique art, which has exceeded the limits of this function. In addition, pottery has a great role in changing the view and understanding of it. Therefore, this art assists in achieving the concepts, philosophies, and values among other fine arts branches.The most prominent issues in this article is dealing with reflections of the cubical arts on the Iraqi contemporary pottery art by through the works of the most prominent contemporary artists such as (Saad Shakir, SHania
... Show More