Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Low grade crude palm oil (LGCPO) presents as an attractive option as feedstock for biodiesel production due to its low cost and non-competition with food resources. Typically, LGCPO contains high contents of free fatty acids (FFA), rendering it impossible in direct trans-esterification processes due to the saponification reaction. Esterification is the typical pre-treatment process to reduce the FFA content and to produce fatty acid methyl ester (FAME). The pre-treatment of LGCPO using two different acid catalysts, such as titanium oxysulphate sulphuric acid complex hydrate (TiOSH) and 5-sulfosalicylic acid dihydrate (5-SOCAH) was investigated for the first time in this study. The optimum conditions for the homogenous catalyst (5-SOCAH) wer
... Show MoreThe present study utilised date palm fibre (DPF) waste residues to adsorb Congo red (CR) dye from aqueous solutions. The features of the adsorbent, such as its surface shape, pore size, and chemical properties, were assessed with X-ray diffraction (XRD), BET, Fourier-transform infrared (FTIR), X-ray fluorescence (XRF), and field emission scanning electron microscope (FESEM). The current study employed the batch system to investigate the ideal pH to adsorb the CR dye and found that acidic pH decolourised the dye best. Extending the dye-DPF waste mixing period at 25°C reportedly removed more dye. Consequently, the influence of the starting dye and DPF waste quantity on dye removal was explored in this study. At 5 g/L dye concentration, 48% d
... Show MoreA system was used to detect injuries in plant leaves by combining machine learning and the principles of image processing. A small agricultural robot was implemented for fine spraying by identifying infected leaves using image processing technology with four different forward speeds (35, 46, 63 and 80 cm/s). The results revealed that increasing the speed of the agricultural robot led to a decrease in the mount of supplements spraying and a detection percentage of infected plants. They also revealed a decrease in the percentage of supplements spraying by 46.89, 52.94, 63.07 and 76% with different forward speeds compared to the traditional method.
Advertisement on smart phone shopping apps are a new way of driving users to satisfy their needs and influence their purchasing decisions, In this way, the research could be aimed to know The role of the relationship between the motivations for audience exposure to shopping apps advertisement and purchasing decisions, In order to achieve the objectives of the research, the researcher adopted the survey method and used the questionnaire and the scale to collect data and information, The researcher chose the "random sample multi stages", The sample size was (475) respondents from Baghdad city center (18 years and above) women and men.
Laboratory studies were conducted at the biological control unit, college of Agriculture, University of Baghdad to evaluate some biological aspects of the predator Chilocorus bipustulatus (Coleoptera: Coccinellidae), which is considered one of the most important predators on many insect pests, especially the scale insect, Parlatoria blanchardi, (Homoptera: Diaspididae) on date palms. The results showed that biological parameters of the predator were varied according to different degree of temperature. Egg incubation period was significantly different and reached to 7.5 and 5.44 day at 25 and 30°C respectively, Fertility was the same 100% at both temperature degrees. Larval growth periods were 17.41 and 16.12 day as well as the mortality
... Show MoreJoint diseases, such as osteoarthritis, induce pain and loss of mobility to millions of people around the world. Current clinical methods for the diagnosis of osteoarthritis include X-ray, magnetic resonance imaging, and arthroscopy. These methods may be insensitive to the earliest signs of osteoarthritis. This study investigates a new procedure that was developed and validated numerically for use in the evaluation of cartilage quality. This finite element model of the human articular cartilage could be helpful in providing insight into mechanisms of injury, effects of treatment, and the role of mechanical factors in degenerative
conditions, this three-dimensional finite element model is a useful tool for understanding of the stress d
Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, Univer
... Show More