Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Spices are natural substances taken from special plants and have a different taste when added to food and some of them have great benefits for health and body. These plants vary from country to country depending on the type of soil and how they are grown and this affects their quality. In this study, the specific activity of 40K, 238U and 232Th series and 137Cs in some selected natural food spices commonly used in Iraq kitchen were determined using gamma spectrometry and the ingested doses via food consumption were also assessed. The average specific activity of 40K, 238<
By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm
... Show MoreBackground: tooth debonding was one of the major reasons for denture repair. With the use of recently introduced thermoplastic denture base materials the problem of tooth debonding increased due to the nature of the bond between these materials and the acrylic teeth. This study was aimed to assess the bond of the acrylic teeth to conventional heat cure acrylic resin and to thermoplastic resin denture base material and methods to enhance it. Materials and methods: acrylic resin teeth were bonded to heat cure acrylic resin with and without wetting the ridge laps of the teeth with monomer and acrylic teeth with prefabricated retentive holes, unmodified and modified, in their ridge laps were processed with Valplast thermoplastic resin denture b
... Show MoreThe two most popular models inwell-known count regression models are Poisson and negative binomial regression models. Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters. Negative binomial regression is similar to regular multiple regression except that the dependent (Y) variables an observed count that follows the negative binomial distribution. This research studies some factors affecting divorce using Poisson and negative binomial regression models. The factors are unemplo
... Show MoreOne of the serious problems in any wireless communication system using multi carrier modulation technique like Orthogonal Frequency Division Multiplexing (OFDM) is its Peak to Average Power Ratio (PAPR).It limits the transmission power due to the limitation of dynamic range of Analog to Digital Converter and Digital to Analog Converter (ADC/DAC) and power amplifiers at the transmitter, which in turn sets the limit over maximum achievable rate.
This issue is especially important for mobile terminals to sustain longer battery life time. Therefore reducing PAPR can be regarded as an important issue to realize efficient and affordable mobile communication services.
... Show More
This work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).
Detecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
Mixed-effects conditional logistic regression is evidently more effective in the study of qualitative differences in longitudinal pollution data as well as their implications on heterogeneous subgroups. This study seeks that conditional logistic regression is a robust evaluation method for environmental studies, thru the analysis of environment pollution as a function of oil production and environmental factors. Consequently, it has been established theoretically that the primary objective of model selection in this research is to identify the candidate model that is optimal for the conditional design. The candidate model should achieve generalizability, goodness-of-fit, parsimony and establish equilibrium between bias and variab
... Show MoreAn extensive program of laboratory testing was conducted on ring footing rested on gypseous soil brought from the north of Iraq (Salah El-Deen governorate) with a gypsum content of 59%. There are limited researches available, and even fewer have been done experimentally to understand how to ring footings behave; almost all the previous works only concern the behavior of ring footing under vertical loads, Moreover, relatively few studies have examined the impact of eccentric load and inclined load on such footing. In this study, a series of tests, including dry and wet tests, were carried out using a steel container (600×600×600) mm, metal ring footing (100 mm outer diameter and 40 mm inner diameter) was placed in the m
... Show More