Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Symptoms of posttraumatic stress disorder are associated with various variables such as the exposure to traumatic events, sex and age. Such events could lead to negative cognitions towards self and the world. These cognitions, in turn, may lead to traumatic related disorders.
The present study aims to identify the percentage of traumatised individuals according to sex and age category variables. It also aims to assess the average of spreading symptoms of posttraumatic stress disorder of traumatised individuals according to sex and age category variables. Likewise, it aims to test variables significance in cognitions towards the world and the self according to the level of the spread of posttraumatic stre
... Show MoreInfrastructure, especially wastewater projects, plays an important role in the life of residential communities. Due to the increasing population growth, there is also a significant increase in residential and commercial facilities. This research aims to develop two models for predicting the cost and time of wastewater projects according to independent variables affecting them. These variables have been determined through a questionnaire distributed to 20 projects under construction in Al-Kut City/ Wasit Governorate/Iraq. The researcher used artificial neural network technology to develop the models. The results showed that the coefficient of correlation R between actual and predicted values were 99.4% and 99 %, MAPE was
... Show MoreABSTRACT: Ultimate bearing capacity of soft ground reinforced with stone column was recently predicted using various artificial intelligence technologies such as artificial neural network because of all the advantages that they can offer in minimizing time, effort and cost. As well as, most of applied theories or predicted formulas deduced analytically from previous studies were feasible only for a particular testing environment and do not match other field or laboratory datasets. However, the performance of such techniques depends largely on input parameters that really affect the target output and missing of any parameter can lead to inaccurate results and give a false indicator. In the current study, data were collected from previous rel
... Show MoreWireless Body Area Sensor Networks (WBASNs) have garnered significant attention due to the implementation of self-automaton and modern technologies. Within the healthcare WBASN, certain sensed data hold greater significance than others in light of their critical aspect. Such vital data must be given within a specified time frame. Data loss and delay could not be tolerated in such types of systems. Intelligent algorithms are distinguished by their superior ability to interact with various data systems. Machine learning methods can analyze the gathered data and uncover previously unknown patterns and information. These approaches can also diagnose and notify critical conditions in patients under monitoring. This study implements two s
... Show MoreAcute appendicitis is the most common surgical abdominal emergency. Its clinical diagnosis remains a challenge to surgeons, so different imaging options were introduced to improve diagnostic accuracy. Among these imaging modality choices, diagnostic medical sonography (DMS) is a simple, easily available, and cost effective clinical tool. The purpose of this study was to assess the accuracy of DMS, in the diagnosis of acute appendicitis compared to the histopathology report, as a gold standard. Between May 2015 and May 2016, 215 patients with suspected appendicitis were examined with DMS. The DMS findings were recorded as positive and negative for acute appendicitis and compared with the histopathological results, as a gold standard
... Show MoreEnglish
Abstract Background: This in-vitro study was to evaluated bitewing radiograph and tactile examination for detection secondary caries adjacent to amalgam restorations. Material and method: Sixty primary extracted molars with class I and class II amalgam restorations were selected from children, and examined by bitewing radiographs were taken by using film holders and interpreted on a backlit screen without magnification. Then, we used tactile examination with blunt probe. Result: The result of this study showed that the best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve and the sensitivity, specificity and accuracy of the techniques were calculated for enamel (
... Show MoreAbstract Depending on their protective properties against different cases of Colorectal Cancer (CRC), vitamins C, D, and E are the main focus of this research. CRC is one of the global public health concerns. 30 healthy individuals provided serum samples, whereas the group of CRC patients was divided into three, totaling 90 individuals. Group I consisted of 30 newly diagnosed cases of CRC. Group II 30 consisted of consisted of 30 CRC patients who were administered three cycles of chemotherapy. Group III consisted of 30 diagnosed CRC patients who also have non-alcoholic fatty liver disease (NAFLD). The concentrations and groups of vitamins C, D, and E were evaluated using ELISA. The levels of Vitamin C were significantly lower (p &l
... Show MoreThe purpose of current study is to analyze the computer textbooks content for intermediate stage in Iraq according to the theory of multiple intelligence. By answering the following question “what is the percentage of availability of multiple intelligence in the content of the computer textbooks on intermediate stage (grade I, II) for the academic year (2017-2018)? The researcher followed the descriptive analytical research approach (content analysis), and adopted an explicit idea for registration. The research tool was prepared according the Gardner’s classification of multiple intelligence. It has proven validity and reliability. The study found the percentage of multiple intelligence in the content of computer textbooks for the in
... Show More