Abstract Background: This in-vitro study was to evaluated bitewing radiograph and tactile examination for detection secondary caries adjacent to amalgam restorations. Material and method: Sixty primary extracted molars with class I and class II amalgam restorations were selected from children, and examined by bitewing radiographs were taken by using film holders and interpreted on a backlit screen without magnification. Then, we used tactile examination with blunt probe. Result: The result of this study showed that the best cut-off points for the sample were found by a Receiver Operator Characteristic (ROC) analysis, and the area under the ROC curve and the sensitivity, specificity and accuracy of the techniques were calculated for enamel (D1) and dentine (D2) thresholds. These parameters were found for each techniques and then compared by the Cochran's Q test. The tactile examination presented the fair techniques for detecting secondary caries at enamel thresholds for both occlusal and proximal surfaces, While, bitewing radiograph presented good techniques at dentin thresholds. Conclusion: Tactile examination represented the best performance for detecting enamel secondary caries. While, bitewing radiograph represented the best performance for detecting dentin secondary caries
Background: Restoration of the gingival margin of Class II cavities with composite resin continues to be problematic, especially where no enamel exists for bonding to the gingival margin. The aim of study is to evaluate the marginal leakage at enamel and cementum margin of class II MOD cavities using amalgam restoration and modern composite restorations Filtek™ P90, Filtek™ Z250 XT (Nano Hybrid Universal Restorative) and SDR bulk fill with different restoratives techniques. Materials and method: Eighty sound maxillary first premolar teeth were collected and divided into two main groups, enamel group and cementum group (40 teeth) for each group. The enamel group was prepared with standardized Class II MOD cavity with gingival margin (1 m
... Show MoreThe recent advancements in security approaches have significantly increased the ability to identify and mitigate any type of threat or attack in any network infrastructure, such as a software-defined network (SDN), and protect the internet security architecture against a variety of threats or attacks. Machine learning (ML) and deep learning (DL) are among the most popular techniques for preventing distributed denial-of-service (DDoS) attacks on any kind of network. The objective of this systematic review is to identify, evaluate, and discuss new efforts on ML/DL-based DDoS attack detection strategies in SDN networks. To reach our objective, we conducted a systematic review in which we looked for publications that used ML/DL approach
... Show MoreDiesel engine oil was subjected to thermal oxidization (TO) for six periods of time (0 h, 24 h, 48 h, 72 h, 96 h, and 120 h) and was subsequently characterized by terahertz time domain spectroscopy (THz-TDS). The THz refractive index generally increased with oxidation time. The measurement method illustrated the potential of THz-TDS when a fixed setup with a single cuvette is used. A future miniaturized setup installed in an engine would be an example of a fixed setup. For the refractive index, there were highly significant differences among the oxidation times across most of the 0.3–1.7 THz range.
Remote sensing and GIS applications (Geoinformatics tools) involve a wide range of techniques for providing a solution for future water resources management and offer an excellent means to improve knowledge of sustainable planning. Al-Razzaza is the second largest lake in Iraq; it is a common source of fishery fortune and floodwater reservoir in southwestern Iraq. In recent years, the lake faced a noticeable amount of desiccation, which is considered a threat to the biodiversity and wildlife of the lake. The study aimed to detect the Lake's spatiotemporal changes from 1988 to 2018. Multi satellite-derived indices were investigated for the extracting of the lake water body. Results showed that the lake volume decrea
... Show MoreCOVID-19 (Coronavirus disease-2019), commonly called Coronavirus or CoV, is a dangerous disease caused by the SARS-CoV-2 virus. It is one of the most widespread zoonotic diseases around the world, which started from one of the wet markets in Wuhan city. Its symptoms are similar to those of the common flu, including cough, fever, muscle pain, shortness of breath, and fatigue. This article suggests implementing machine learning techniques (Random Forest, Logistic Regression, Naïve Bayes, Support Vector Machine) by Python to classify a series of chest X-ray images that include viral pneumonia, COVID-19, and healthy (Not infected) cases in humans. The study includes more than 1400 images that are collected from the Kaggle platform. The expe
... Show MoreAbstract Kidney stones are one of the most common and most painful medical problems known (1). Nurses assess and monitor patients through diagnosis and treatment and teach patients how to avoid recurrence of stones (2). A descriptive study was conducted on 150 patients diagnosed with recurrent kidney stones, who were attending the out patients consultation urology disease clinics at surgical specialties, Al-Kadhimia, Al-Yarmook, and Al-Karama Teaching Hospital and Extracorporeal shock wave lithotripsy (ESWL) departments for the period from the 1st of Feb. 2002 through to the end of May 2004. The aim of
In this research, a numerical simulation was conducted to study the behavior of the scouring pattern and the effect of spacing between bridge piers at specified hydraulic conditions such as velocity, depth of flow, and the sediment effective diameter. Moreover, the cross-section shape of piers and their effect on the scouring depth around bridge piers was studied, using Computational Fluid Dynamics (CFD), ANSYS (Fluent) software. A comparison of the simulation results obtained with previous laboratory investigations was done to verify the validity of the numerical model. Generally, the scour pattern using the CFD software gave good agreement with the experimental study. A reversed pro
Image classification can be defined as one of the most important tasks in the area of machine learning. Recently, deep neural networks, especially deep convolution networks, have participated greatly in end-to-end learning which reduce need for human designed features in the image recognition like Convolution Neural Network. It is offers the computation models which are made up of several processing layers for learning data representations with several abstraction levels. In this work, a pre-trained deep CNN is utilized according to some parameters like filter size, no of convolution, pooling, fully connected and type of activation function which includes 300 images for training and predict 100 image gender using probability measures. Re
... Show More