Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Brain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show MoreThe objectives of the study were to identify the incidence rate and characteristics of adverse drug events (ADEs) in nursing homes (NHs) using the ADE trigger tool and to evaluate the relationships between resident and facility work system factors and incidence of ADEs using the System Engineering Initiative for Patient Safety (SEIPS) model. The study used 2 observational quantitative methods, retrospective resident chart extraction, and surveys. The participating staff included Directors of nursing, registered nurses, certified nurse assistants (CNAs). Data were collected from fall 2016 to spring 2017 from 11 NHs in 9 cities in Iowa. Binary logistic regression with generalized estimated equations was used to measure the association
... Show MoreHealth service institutions suffer from challenges resulting from the great changes that our world is witnessing today. This has affected the value that these institutions add to the patient.
This research aims to identify the effect of integrating each of the techniques of QFD and value engineering for the health services provided to the patient to improve the value for him and thus obtain his satisfaction, which is reflected in the reputation of the surveyed hospitals. To achieve this, the descriptive analytical method was used, and a questionnaire was designed to collect the necessary data, which represents a measure of this research. The questionnaire was distri
... Show MoreThis paper presents a robust algorithm for the assessment of risk priority for medical equipment based on the calculation of static and dynamic risk factors and Kohnen Self Organization Maps (SOM). Four risk parameters have been calculated for 345 medical devices in two general hospitals in Baghdad. Static risk factor components (equipment function and physical risk) and dynamics risk components (maintenance requirements and risk points) have been calculated. These risk components are used as an input to the unsupervised Kohonen self organization maps. The accuracy of the network was found to be equal to 98% for the proposed system. We conclude that the proposed model gives fast and accurate assessment for risk priority and it works as p
... Show MoreAs population growth increases the demand for crops increases and their quality improves, and it becomes necessary to find innovative and modern solutions to enhance production. In this context, artificial intelligence plays a pivotal role in developing new technologies to improve crop sorting and increase agricultural yields. The present review discusses the main differences between manual and mechanical potato harvesting, explaining the advantages and disadvantages of each method. Manual harvesting is highlighted as a traditional method that allows for greater precision in handling the crop, but it requires more time and effort. In contrast, mechanical harvesting provides greater efficiency and speed in the process, but it may damage some
... Show More