Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep learning model was utilized to resize images and feature extraction. Finally, different ML classifiers have been tested for recognition based on the extracted features. The effectiveness of each classifier was assessed using various performance metrics. The results show that the proposed system works well, and all the methods achieved good results; however, the best results obtained were for the Support Vector Machine (SVM) with a linear kernel.
Background: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, an
... Show MorePan sharpening (fusion image) is the procedure of merging suitable information from two or more images into a single image. The image fusion techniques allow the combination of different information sources to improve the quality of image and increase its utility for a particular application. In this research, six pan-sharpening method have been implemented between the panchromatic and multispectral images, these methods include Ehlers, color normalize, Gram-Schmidt, local mean and variance matching, Daubechies of rank two and Symlets of rank four wavelet transform. Two images captured by two different sensors such as landsat-8 and world view-2 have been adopted to achieve the fusion purpose. Different fidelity metric like MS
... Show MoreAccuracy in multiple objects segmentation using geometric deformable models sometimes is not achieved for reasons relating to a number of parameters. In this research, we will study the effect of changing the parameters values on the work of the geometric deformable model and define their efficient values, as well as finding out the relations that link these parameters with each other, by depending on different case studies including multiple objects different in spacing, colors, and illumination. For specific ranges of parameters values the segmentation results are found good, where the success of the work of geometric deformable models has been limited within certain limits to the values of these parameters.
The purpose of this article was to identify and assess the importance of risk factors in the tendering phase of construction projects. The construction project cannot succeed without the identification and categorization of these risk elements. In this article, a questionnaire for likelihood and impact was designed and distributed to a panel of specialists to analyze risk factors. The risk matrix was also used to research, explore, and identify the risks that influence the tendering phase of construction projects. The probability and impact values assigned to risk are used to calculate the risk's score. A risk matrix is created by combining probability and impact criteria. To determine the main risk elements for the tender phase of
... Show MoreThe purpose of this article was to identify and assess the importance of risk factors in the tendering phase of construction projects. The construction project cannot succeed without the identification and categorization of these risk elements. In this article, a questionnaire for likelihood and impact was designed and distributed to a panel of specialists to analyze risk factors. The risk matrix was also used to research, explore, and identify the risks that influence the tendering phase of construction projects. The probability and impact values assigned to risk are used to calculate the risk's score. A risk matrix is created by combining probability and impact criteria. To determine the main risk elements for the tend
... Show MoreThe Intelligence of the Child in Relation to some Variables
In the present work, the image and representation of Adela, the youngest daughter of the family of the Casa de Bernarda Alba, one of the most popular works of the Spanish author Federico García Lorca (1898-1936), will be analyzed. In this work, there are different themes, but what concerns us is to show the repression, oppression and rebellion of this character in a context of customs of the 1920s in Spain. They are revealing elements in that period in which women were relegated to the background, despite the fact that a feminist movement had already begun in Spain. By studying Adela, we seek to see how a single woman confronts her family and the society that surrounds her to fight for freedom, although its end is finally linked to
... Show MoreIn this paper we investigate the automatic recognition of emotion in text. We propose a new method for emotion recognition based on the PPM (PPM is short for Prediction by Partial Matching) character-based text compression scheme in order to recognize Ekman’s six basic emotions (Anger, Disgust, Fear, Happiness, Sadness, Surprise). Experimental results with three datasets show that the new method is very effective when compared with traditional word-based text classification methods. We have also found that our method works best if the sizes of text in all classes used for training are similar, and that performance significantly improves with increased data.
BACKGROUND: Diabetes Mellitus is a complex chronic illness that has increased significantly around the world and is expected to affect 628 million in 2045. Undiagnosed type 2 diabetes may affect 24% - 62% of the people with diabetes; while the prevalence of prediabetes is estimated to be 470 million cases by 2030. AIM OF STUDY: To find the percentage of undiagnosed diabetes and prediabetes in a slice of people aged ≥ 45years, and relate it with age, gender, central obesity, hypertension, and family history of diabetes. METHODS: A cross sectional study that included 712 healthy individuals living in Baghdad who accepted to take part in this study and fulfilling the inclusion and exclusion criteria.
... Show More