Sub-threshold operation has received a lot of attention in limited performance applications.However, energy optimization of sub-threshold circuits should be performed with the concern of the performance limitation of such circuit. In this paper, a dual size design is proposed for energy minimization of sub-threshold CMOS circuits. The optimal downsizing factor is determined and assigned for some gates on the off-critical paths to minimize the energy at the maximum allowable performance. This assignment is performed using the proposed slack based genetic algorithm which is a heuristic-mixed evolutionary algorithm. Some gates are heuristically assigned to the original and the downsized design based on their slack time determined by static timing analysis. Other gates are subjected to the genetic algorithm to perform an optimal downsizing assignment taking into account the previous assignments. The algorithm is applied for different downsizing factors to determine the optimal dual size for low energy operation without a performance degradation. Experimental results are obtained for some ISCAS-85 benchmark circuits such as 74283, 74L85, ALU74181, and 16 bit ripple carry adder. The proposed design shows an energy per cycle saving ranged from (29.6% to 56.59%) depending on the utilization of available slack time from the off-critical paths. © School of Engineering, Taylor’s University.
Research aims to shed light on the concept of corporate failures , display and analysis the most distinctive models used to predicting corporate failure; with suggesting a model to reveal the probabilities of corporate failures which including internal and external financial and non-financial indicators, A tested is made for the research objectivity and its indicators weight and by a number of academics professionals experts, in addition to financial analysts and have concluded a set of conclusions , the most distinctive of them that failure is not considered a sudden phenomena for the company and its stakeholders , it is an Event passes through numerous stages; each have their symptoms that lead eve
... Show MoreQuantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using layers of ITO/TPD: PMMA/CdSe/Alq3, ITO/TPD: PMMA/CdS/Alq3 and ITO/TPD: PMMA/ZnS/Alq3 devices which prepared by phase segregation method. The hybrid white light emitting devices consists, of three-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers. The second layer was QDs while the third layer was tris (8-hydroxyquinoline) aluminium (Alq3
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
This research aims to test the relationship between "relational leadership as an independent variable and organizational energy as a dependent variable. The current research variables are among the recent and important variables for the development of organizations, and for the purpose of explaining the relationship and influence between the variables, a set of goals has been formulated, including providing the interested and scientific and theoretical information explaining the nature of the variables The research, and the extent to which its causes are reflected in the research sample to increase the interest of the research organization’s organization and make it more appropriate to the required performance in light of a cha
... Show MoreWell-dispersed Cu2FeSnSe4 (CFTSe) nanoparticles were first synthesized using the hot-injection method. The structure and phase purity of as-synthesized CFTSe nanoparticles were examined by X-ray diffraction (XRD) and Raman spectroscopy. Their morphological properties were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The average particle sizes of the nanoparticles were about 7-10 nm. The band gap of the as-synthesized CFTS nanoparticles was determined to be about 1.15 eV by ultraviolet-visible (UV-Vis) spectrophotometry. Photoelectrochemical characteristics of CFTSe nanoparticles were also studied, which indicated their potential application in solar energy water splitting.
The physical behavior for the energy distribution function (EDF) of the reactant particles depending upon the gases (fuel) temperature are completely described by a physical model covering the global formulas controlling the EDF profile. Results about the energy distribution for the reactant system indicate a standard EDF, in which it’s arrive a steady state form shape and intern lead to fix the optimum selected temperature.
Research in consumer science has proven that grocery shopping is a complex and distressing process. Further, the task of generating the grocery lists for the grocery shopping is always undervalued as the effort and time took to create and manage the grocery lists are unseen and unrecognized. Even though grocery lists represent consumers’ purchase intention, research pertaining the grocery lists does not get much attention from researchers; therefore, limited studies about the topic are found in the literature. Hence, this study aims at bridging the gap by designing and developing a mobile app (application) for creating and managing grocery lists using modern smartphones. Smartphones are pervasive and become a necessity for everyone tod
... Show MoreIn the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More