This study aims to encapsulate atenolol within floating alginate-ethylcellulose beads as an oral controlled-release delivery system using aqueous colloidal polymer dispersion (ACPD) method.To optimize drug entrapment efficiency and dissolution behavior of the prepared beads, different parameters of drug: polymer ratio, polymer mixture ratio, and gelling agent concentration were involved.The prepared beads were investigated with respect to their buoyancy, encapsulation efficiency, and dissolution behavior in the media: 0.1 N HCl (pH 1.2), acetate buffer (pH 4.6) and phosphate buffer (pH 6.8). The release kinetics and mechanism of the drug from the prepared beads was investigated.All prepared atenolol beads remained floating on 0.1 N HCl (pH 1.2) medium over 24 hours. Besides, high yield beads of 73.07- 84.31% was obtained. Encapsulation efficiencies were in the range of 33.10 % -79.04 %, and were found to increase as a function of increasing drug: polymer mixture ratio and the gelling agent concentrations.Moreover, atenolol release profile from the beads was affected by the pH of the dissolution medium. It was found to be slowest in 0.1 N HCl (pH 1.2) and fastest in phosphate buffer (pH 6.8).The obtained results suggest that atenolol could be formulated as a controlled release beads, using ethylcellulose and alginate as polymers, using ACPD method. Keywords: Floating beads, Atenolol, Controlled Delivery System
Manganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size in
... Show MoreThe economical and highly performed anode material is the critical factor affecting the efficiency of electro-oxidation toward organics. The present study aimed to detect the best conditions to prepare Mn-Co oxide composite anode for the electro-oxidation of phenol. Deposition of Mn-Co oxide onto graphite substrate was investigated at 25, 30, and 35 mA/cm2 to detect the best conditions for deposition. The structure and the crystal size of the Mn-Co oxide composite electrode were examined by using an X-Ray diffractometer (XRD), the morphological properties of the prepared electrode were studied by scanning electron microscopy (SEM) and Atomic force microscopy (AFM) techniques, and the chemical composition of the various
... Show MoreBackground: Diabetic mellitus (DM) is a collection of metabolic disorder identified by hyperglycemia. The heterogeneous etiology includes defects either in insulin secretion, or in insulin action, or the both. In addition to the distraction in carbohydrate, fat and protein metabolism. Inflammatory reaction that caused by many pro-inflammatory cytokines play a central role in the pathogenicity of T2DM, these cytokines can enhance insulin resistance which led to impaired glucose homeostasis. Subjects: The study included 75 patients (38 males and 37 females) suffering from T2DM with age mean ± SE 52.30 ± 1.60, and 70 individuals as healthy controls (35 males and 35 females) with age mean ± SE 48.88 ± 0.64. Evaluation of immunological marke
... Show MoreIntellectual and material displacement is one of the design strategies through many mechanisms and means, and depends on the idea of changing the shape within the internal spaces at times and has concepts related to the transformation at other times. And represented by the boxes for travelers, the research problem emerged through the following question: (What is the effectiveness of displacement in the formal structures in the interior design of historical sites), and the aim of the study is to reveal the reality of the use of historical internal spaces and to determine the formal displacement that occurs as a result of change and transformation, and it included two topics, the first topic Transformation and the effectiveness of formal d
... Show More In this work a Nd:YVO4 thin disc laser setup is designed and fabricated. The disk laser system
is designed to be compact. The laser crystal was pumped by a 808 nm diode laser. The effect of input
current and pulse frequency on the output energy at pulse operation mode, and the effect of the input
current on the output power at CW mode operation are tested. At the pulsed mode, the output energy
increased linearly with the input current and decreased with pulse frequency. The threshold current
increased with increasing pulse frequency increasing. The maximum output energy from the thin disc
laser was 0.98 μJ at 1.3 kHz frequency, with 0.49A. A minimum threshold current for CW mode of
operation. The maximum outpu
The objective of the study is developing a procedure for production and characterization of rice husk ash (RHA). The effects of rice husk (RH) amount, burning/cooling conditions combined with stirring on producing of RHA with amorphous silica, highest SiO2, lowest loss on ignition (LOI), uniform particle shape distribution and nano structured size have been studied. It is concluded that the best amount is 20 g RH in 125 ml evaporating dish Porcelain with burning for 2 h at temperature 700 °C combined with cooling three times during burning to produce RHA with amorphous silica, SiO2 90.78% and LOI 1.73%. On the other hand, cooling and stirring times affect the variation of nano structured size and particle shape dis
... Show Moreِabstract:In this research we prepared nanofibers by electrospinning from poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission) was studied and found to be at 772 nm, several process parameters were such as concentration of TiO2 , and the effect of distance from nozzle tip to the grounded collector (gap distance). The result of the lower concentration of, the smaller the diameter of nanofiber is. Increasing the gap distance will affect nanofibers diameter.