Soil that has been contaminated by heavy metals is a serious environmental problem. A different approach for forecasting a variety of soil physical parameters is reflected spectroscopy is a low-cost, quick, and repeatable analytical method. The objectives of this paper are to predict heavy metal (Ti, Cr, Sr, Fe, Zn, Cu and Pb) soil contamination in central and southern Iraq using spectroscopy data. An XRF was used to quantify the levels of heavy metals in a total of 53 soil samples from Baghdad and ThiQar, and a spectrogram was used to examine how well spectral data might predict the presence of heavy metals metals. The partial least squares regression PLSR models performed well in predicting the Sr and Cr elements using spectroscopy, with coefficients R2 = 0.73 and RMSE = 63.8 for the determination, and R2 = 0.60 and RMSE = 16.4 for Cr, respectively. This research validates the detection of heavy metal contamination using reflectance spectroscopy. Results of the current study proved that some heavy elements have spectral features become either when their concentrations low or high, such as Cr, Sr, Cu and Zn. The current study opens new possibilities for studying these elements using remote sensing in the future.
Cohesion is well known as the study of the relationships, whether grammatical and/or lexical, between the different elements of a particular text by the use of what are commonly called 'cohesive devices'. These devices bring connectivity and bind a text together. Besides, the nature and the amount of such cohesive devices usually affect the understanding of that text in the sense of making it easier to comprehend. The present study is intendedto examine the use of grammatical cohesive devicesin relation to narrative techniques. The story of Joseph from the Holy Quran has been selected to be examined by using Halliday and Hasan's Model of Cohesion (1976, 1989). The aim of the study is to comparatively examine to what extent the type
... Show MoreThe possible effect of the collective motion in heavy nuclei has been investigated in the framework of Nilson model. This effect has been searched realistically by calculating the level density, which plays a significant role in the description of the reaction cross sections in the statistical nuclear theory. The nuclear level density parameter for some deformed radioisotopes of (even- even) target nuclei (Dy, W and Os) is calculated, by taking into consideration the collective motion for excitation modes for the observed nuclear spectra near the neutron binding energy. The method employed in the present work assumes equidistant spacing of the collective coupled state bands of the considered isotopes. The present calculated results for f
... Show MoreOver the years, the prediction of penetration rate (ROP) has played a key rule for drilling engineers due it is effect on the optimization of various parameters that related to substantial cost saving. Many researchers have continually worked to optimize penetration rate. A major issue with most published studies is that there is no simple model currently available to guarantee the ROP prediction.
The main objective of this study is to further improve ROP prediction using two predictive methods, multiple regression analysis (MRA) and artificial neural networks (ANNs). A field case in SE Iraq was conducted to predict the ROP from a large number of parame
BaCoxTixFe12-2xO19 (x=0.1, 0.5, 0.7, 0.9, 1.7) were prepared using powder technology technique . X-ray diffraction with diffractometer CuKα radiation analysis and Rietveld refinement of the samples were studied and showed a single phase of hexagonal structure with SP63/mmc space group . Lattice parameters, cell volume , crystallite size and x-ray density were determined .The hexagonal structure was represented by using PowderCell program showing the atomic positions of Co ,Ti, and Fe ions.
This paper features the modeling and design of a pole placement and output Feedback control technique for the Active Vibration Control (AVC) of a smart flexible cantilever beam for a Single Input Single Output (SISO) case. Measurements and actuation actions done by using patches of piezoelectric layer, it is bonded to the master structure as sensor/actuator at a certain position of the cantilever beam.
The smart structure is modeled based on the concept of piezoelectric theory, Bernoulli -Euler beam theory, using Finite Element Method (FEM) and the state space techniques. The number of modes is reduced using the controllability and observability grammians retaining the first three
dominant vibratory modes, and for the reduced syste
In this study, experimental and numerical applied of heat distribution due to pulsed Nd: YAG laser surface melting. Experimental side was consists of laser parameters are, pulse duration1.3
This study focuses on CFD analysis in the field of the shell and double concentric tube heat exchanger. A commercial CFD package was used to resolve the flow and temperature fields inside the shell and tubes of the heat exchanger used. Simulations by CFD are performed for the single shell and double concentric tube.
This heat exchanger included 16 tubes and 20 baffles. The shell had a length of 1.18 m and its diameter was 220 mm. Solid Works 2014, ANSYS 15.0 software was used to analyze the fields of flow and temperature inside the shell and the tubes. The RNG k-ε model was used and it provided good results. Coarse and fine meshes were investigated, showing that aspect ratio has no significant effect. 14 million
... Show MoreThis work focused on principle of higher order mode excitation using in- line Double Clad Multi-Mode Mach-Zehnder Interferometer (DC-MM-MZI). The DC-MM-MZI was designed with 50 cm etched MMF. The etching length is 5cm. The tenability of this interferometer was studied using opt grating ver.4.2.2 and optiwave
ver. 7 simulator. After removing (25, 35, 45, 55) μm from MMF and immersing this segment of MMF with water bath contained distilled water and ethanol, in addition to, air. Pulsed laser source centered at 1546.7nm ,pulse width 10ns and peak power 1.33mW was propagated via this interferometer Maximum modes were obtained in case of air surrounded media which are 9800 and 25 um removed cladding layer, with peak power 49.800 m