Research on the automated extraction of essential data from an electrocardiography (ECG) recording has been a significant topic for a long time. The main focus of digital processing processes is to measure fiducial points that determine the beginning and end of the P, QRS, and T waves based on their waveform properties. The presence of unavoidable noise during ECG data collection and inherent physiological differences among individuals make it challenging to accurately identify these reference points, resulting in suboptimal performance. This is done through several primary stages that rely on the idea of preliminary processing of the ECG electrical signal through a set of steps (preparing raw data and converting them into files that are read and then processed by removing empty data and unifying the width of the signal at a length of 250 in order to remove noise accurately, and then performing the process of identifying the QRS in the first place and P-T implicitly, and then the task stage is determining the required peak and making a cut based on it. The U-Net pre-trained model is used for deep learning. It takes an ECG signal with a customisable sampling rate as input and generates a list of the beginning and ending points of P and T waves, as well as QRS complexes, as output. The distinguishing features of our segmentation method are its high speed, minimal parameter requirements, and strong generalization capabilities, which are used to create data that can be used in diagnosing diseases or biometric systems.
Deep submicron technologies continue to develop according to Moore’s law allowing hundreds of processing elements and memory modules to be integrated on a single chip forming multi/many-processor systems-on-chip (MPSoCs). Network on chip (NoC) arose as an interconnection for this large number of processing modules. However, the aggressive scaling of transistors makes NoC more vulnerable to both permanent and transient faults. Permanent faults persistently affect the circuit functionality from the time of their occurrence. The router represents the heart of the NoC. Thus, this research focuses on tolerating permanent faults in the router’s input buffer component, particularly the virtual channel state fields. These fields track packets f
... Show MoreWe prepared polythiophene (PTH) with single wall carbon nanotube (SWCNT) nanocomposite thin films for Nitrogen dioxide (NO2) gas sensing applications. Thin films were synthesized via electrochemical polymerization method onto (Indium tin oxide) ITO coated glass substrate of thiophene monomer with magnesium perchlorate and different concentration from SWCNT (0.012 and 0.016) % in the presence130mL of Acetonitrile used. X-ray diffraction (XRD), Field Emission Scanning Electron microscopy (FE-SEM), Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterized these nanocomposite thin films. The response of these nanocomposite for NO2 gas was evaluated via monitoring the change
... Show MoreThe purpose of this paper is to identifying some of the physical, kinetic and electrical capabilities of the working muscles of patients with simple hemiplegic cerebral palsy, preparation of special exercises (rehabilitation and water) accompanied by symmetrical electrical stimulation in the rehabilitation of working muscles for patients with simple hemiplegic cerebral palsy, and identifying the effect of exercises, especially (rehabilitation and water), accompanied by symmetrical electrical stimulation, on some physical, kinetic and electrical capabilities in rehabilitating working muscles for patients with simple hemiplegic cerebral palsy. The researcher used the experimental approach with a one-group design with two pre and post-tests du
... Show MoreIron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show MoreThe crystal compounds Tl2-xAg2-ySryBayCa2Cu3O10+& are successfully prepared in different concentrations (x, y=0.1, 0.2, 0.3, 0.4, 0.5) by solid state reaction process. The samples were then subjected to Nano technique under hydrolic pressure 8 ton/cm2. samples have been annealed in (850 C0) for 72 hours. The results show a best value at x, y=0.3 ratio of Ag, Ba. Electrical resistivity at x, y= 0.3 of Ag, Ba are obtained when the best value of Tc= 141 K. Samples morphology were also observed by AFM (in three dimensions), the best value of Nano is 91.74 nm at x, y= 0.3. Morphological structures of the surface were also observed by (SEM) and (EDX) show that there are dark regions and light which indicate the presence of heavy elements a
... Show MoreThe research aims to measure the net nominal protection coefficients for the products table eggs and poultry meat and the extent of its impact on domestic production volume for the period of 1990- 2013 has been the use of mathematical formulas simplified in the calculation of the transaction process with a view to the extent of support and protection offered by the state pricing policy for products Resources Sector Animal in Iraq and reach search Highlights and most important, there are volatile price state policy with regard to eggs and poultry meat, as it ranged net nominal protection coefficients between the larger and less than the right one, which means that values are unstable to support local producers or consumers, and can be The
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show More