Abstract: Polarization beam splitter (PBS) integrated waveguides are the key components in the receiver of quantum key distribution (QKD) systems. Their function is to analyze the polarization of polarized light and separate the transverse-electric (TE) and transverse-magnetic (TM) polarizations into different waveguides. In this paper, a performance study of polarization beam splitters based on horizontal slot waveguide has been investigated for a wavelength of . PBS based on horizontal slot waveguide structure shows a polarization extinction ratio for quasi-TE and quasi-TM modes larger than with insertion loss below and a bandwidth of . Also, the fabrication tolerance of the structure is analyzed.<
... Show MoreThe Maxwell equations have been formulated for a composite slab waveguide at x-band wave propagation. The eigenvalues of the system equations are obtained by using MATLAB program. These eigenvalues are used to obtain the wave propagation constant and a number of modes inside the slabs. A good correspondence was seen between the number of modes and the cut off thickness. The parameter that affects the performance of waveguide is the slab thickness. The propagation constant is usually adopted to characterize this type of waveguide and show how the cutoff frequency of the mode in the slab is increased dramatically by decreasing the frequency.
Our study focused on lower modes, the results for the transmission coefficient are then used to
Fabrication of solar cell prepared by thermal spray and vacuum thermal evaporation method on silicon wafer(n-type) and studying its efficiency. The film have been deposited on three layers(ZnO then CdS and CdTe) on Si and glass respectively.Direct energy gap was calculated and equal to (4.3,3.4,3)eV and indirect energy gap equal to (3.5,2.5,1.5)eV respectively . Efficiency was calculated for the cell of area 2cm2 it was equal to 0.14%.
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
In this study, an analytical model depending on experimental results for InPInGaAs
avalanche photodiode at low bias was presented and the characteristics of
gain for this photodiode were determined directly by the impulse response. The
model have considered the most important mechanisms contributing the
photocurrent, they are trapping, photogeneration in the undepleted region and
charge-carriers velocity due to the built-in electrical field. Also, the bandwidth
was determined as a function to the total gain of photodiode and it was mainly
determined by diffusion and trapping processes at low gain regarding to the multilayer
structure considered in this study
We manufactured the nanoparticles light emitting diode (NPs-LED) for organic and inorganic semiconductors to achieve electroluminescence (EL). The nanoparticles of Europium oxide(Eu2O3) were incorporated into the thin film layers of the organic compounds, poly(3,4,- ethylene dioxythiophene)/polystyrene sulfonic acid (PEDOT:PSS), N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’- diamine (poly TPD) and polymethyl methacrylate (PMMA), by the spin coating and with the help of the phase segregation method. The EL of NPs-LED, was study for the different bias voltages (20, 25, 30) V at the room temperature, from depending on the CIE 1931 color spaces and it was generated the white light at 20V, t
... Show MoreThe plethora of the emerged radio frequency applications makes the frequency spectrum crowded by many applications and hence the ability to detect specific application’s frequency without distortion is a difficult task to achieve.
The goal is to achieve a method to mitigate the highest interferer power in the frequency spectrum in order to eliminate the distortion.
This paper presents the application of the proposed tunable 6th-order notch filter on Ultra-Wideband (UWB) Complementary Metal-Oxide-Semiconductor (CMOS) Low Noise
ZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700
... Show MoreThe paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.