The aim of this paper is to design artificial neural network as an alternative accurate tool to estimate concentration of Cadmium in contaminated soils for any depth and time. First, fifty soil samples were harvested from a phytoremediated contaminated site located in Qanat Aljaeesh in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. The inputs are the soil depth, the time, and the soil parameters but the output is the concentration of Cu in the soil for depth x and time t. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Cadmium. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this work show that the ANN technique trained on experimental measurements can be successfully applied to the rapid estimation of Cadmium concentration
The aesthetic and technical expertise help in producing the artistic work and achieving results in aesthetic formulations that reflect the aesthetic and expressive dimensions and the reflective dimensions of the pottery, surpassing its traditions, asserting its active presence in life, cherishing it even when it breaks or get damaged by employing techniques that are originated from the Japanese environment.
The research problem is to study how ( Kintsugi) technique and similar techniques are used to create new rebirths of pottery piec
... Show MoreThe paper presents the results of the research on the influence of the adjuvant concentration on the size of the drops produced by the spray nozzles of agricultural sprayers. For the tests, adjuvant Normaton with the composition of total nitrogen, amide nitrogen (N-NH2) and phosphorus pentoxide (P2O5) was used. The adjuvant was added to the water taken from the municipal water supply system of the city of Lublin. The tests were carried out for three concentrations, i.e. 75%, 100%, and 125% of the adjuvant concentration recommended by the manufacturer, and water without the adjuvant. The surface tension of water with adjuva
Predicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreIn this study, a new type of circulating three-phase fluidized bed reactor was conducted by adding a spiral path and was named as spiral three-phase fluidized bed reactor (TPFB-S) to investigate the possibility for removing engine oil (virgin and waste form) from synthetic wastewater by using Ricinus communis (RC) leaves natural and activated by KOH. The biosorption process was conducted by changing particle diameter in the range 150–300 and 300–600 µm, liquid flow rate in the range 2.5–4.5 L/min and gas flow rate in range of 0–1 L/min, while other parameters initial oil emulsion concentration, pH, adsorbent concentration, agitation speed and contact time were kept constant at 2000 mg/L, 2,
The variation of compression index Cc and swelling index Cs with the degree of saturation S was studied on unsaturated and fully saturated soils for different degrees of saturation (100%, 91%, 85%, 75%, 60%), several mathematical equations were found to describe these relationships, these equations can be used to predict settlement during the consolidation process in unsaturated and fully saturated soils.
The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.
Electrical distribution system loads are permanently not fixed and alter in value and nature with time. Therefore, accurate consumer load data and models are required for performing system planning, system operation, and analysis studies. Moreover, realistic consumer load data are vital for load management, services, and billing purposes. In this work, a realistic aggregate electric load model is developed and proposed for a sample operative substation in Baghdad distribution network. The model involves aggregation of hundreds of thousands of individual components devices such as motors, appliances, and lighting fixtures. Sana’a substation in Al-kadhimiya area supplies mainly residential grade loads. Measurement-based
... Show More