Abstract Rasha Hameid Jehad Baghdad University Background: The high reactivity of hydrogen peroxide used in bleaching agents have raised important questions on their potential adverse effects on physical properties of restorative materials. The purpose of this in vitro study was to evaluate the effect of in-office bleaching agents on the microhardness of a new Silorane-based restorative material in comparison to methacrylate-based restorative material. Materials and method: Forty specimens of Filtek™ P90 (3M ESPE,USA) and Filtek™ Supreme XT (3M ESPE, USA) of (8mm diameter and 3m height) were prepared. All specimens were polished with Sof-Lex disks (3M ESPE, USA). All samples were rinsed and stored in incubator 37˚C for 24 hours in DDW. Ten sample of each material were subjected to 37.5% hydrogen peroxide gel (Pola office +, SDI)for 8 minutes while exposed to light curing device, this step was repeated three times for 3 weeks. While the other ten samples for each material was served as control. All specimens were subjected to microhardness test using digital microhardness tester to determine the VHN (Vickers Hardness Number) Results : The Filtek™ P90 exhibited higher microhardness value than Filtek™ Supreme XT. After hydrogen peroxide treatment, both types of composites exhibited low microhardness values but still Filtek™ P90 is harder than Filtek™ Supreme XT. Conclusion : In-office hydrogen peroxide bleaching agent resulted in reduction in microhardness values for both composite materials. Silorane- based composite is more affected by the bleaching agent than methacrylate-based composite.
Background: Polymethyl methacrylate (PMMA) is the most commonly used material in denture fabrication. The material is far from ideal in fulfilling the mechanical requirements, like low impact and transverse strength, poor thermal conductivity. The purpose of this study was to evaluate the effect of addition a composite of surface treated Nano Aluminum oxide (Al2O3) filler and plasma treated polypropylene fiber (PP) on some properties of denture base material. Materials and methods: One hundred fifty prepared specimens were divided into 5 groups according to the tests, each group consisted of 30 specimens and these were subdivided into 3 groups (unreinforced heat cured acrylic resin as control group),reinforced acrylic resin with( 0.5%wt Nan
... Show MoreBackground: acrylic resin denture base consider a common denture base material for its acceptable cost, aesthetic and easy processing but still has disadvantages including easy of fracture and low impact strength. Material and method: The experimental group was prepared by addition of 15% phosphoric acid 2-hydroxyethyl methacrylate ester (PA2HEME) with polymethyl methacrylate monomer; the experimental groups was compared with the control one. The specimens were prepared according to ADA specification No. 12 with dimension 65 mm x 10 mm x2.5 mm (length x width x thickness respectively). The prepared specimens were tested by three-point flexural strength utilizing Instron Universal Testing Machine (WDW, Layree Technology Co.), Shore D hard
... Show More
A novel analytical method is developed for the determination of azithromycin. The method utilizes continuous flow injection analysis to enhance the chemiluminescence system of luminol, H2O2, and Cr(III). The method demonstrated a linear dynamic range of 0.001–100 mmol L-1 with a high correlation coefficient (r) of 0.9978, and 0.001–150 mmol L-1 with a correlation coefficient (r) of 0.9769 for the chemiluminescence emission versus azithromycin concentration. The limit of detection (L.O.D.) of the method was found to be 18.725 ng.50 µL−1 based on the stepwise dilution method for the lowest concentration within the linear dynamic range of the calibration graph. The relative standard deviation (R.S.D. %) for n = 6 was less than 1.2%
... Show MoreIn this study, the flexural performance of a new composite beam–slab system filled with concrete material was investigated, where this system was mainly prepared from lightweight cold-formed steel sections of a beam and a deck slab for carrying heavy floor loads as another concept of a conventional composite system with a lower cost impact. For this purpose, seven samples of a profile steel sheet–dry board deck slab (PSSDB/PDS) carried by a steel cold-formed C-purlins beam (CB) were prepared and named “composite CBPDS specimen”, which were tested under a static bending load. Specifically, the effects of the profile steel sheet (PSS) direction (parallel or perpendicular to the span of the specimen) using different C-purlins c
... Show MoreThis study aims to improve the quality of satellites signals in addition to increase accuracy level delivered from handheld GPS data by building up a program to read and decode data of handheld GPS. Where, the NMEA protocol file, which stands for the National Marine Electronics Association, was generated from handheld GPS receivers in real time using in-house design program. The NMEA protocol file provides ability to choose points positions with best status level of satellites such as number of visible satellite, satellite geometry, and GPS mode, which are defined as accuracy factors. In addition to fix signal quality, least squares technique was adopted in this study to minimize the residuals of GPS observations and enh
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreResilient polymeric materials such as silicone elastomers are currently used for maxillofacial prostheses construction but the strength of these materials and their clinical performance need to be optimized with the addition of reinforcing fillers. This study investigates the effect of zirconia nanopowder addition on tear strength, tensile strength, elongation at break, Shore A hardness, surface roughness and cytotoxicity of VST-50 maxillofacial silicone. Silicone base was mixed with different amounts (1%, 2% and 3%) of zirconia nanopowder using a vacuum mixer. Silicone without filler was used as control for comparison. Scanning Electron Microscopy and Atomic Force Microscopy were utilized to assess the efficiency of high-shear vacuum mixin
... Show MoreThis research aims to solve the nonlinear model formulated in a system of differential equations with an initial value problem (IVP) represented in COVID-19 mathematical epidemiology model as an application using new approach: Approximate Shrunken are proposed to solve such model under investigation, which combines classic numerical method and numerical simulation techniques in an effective statistical form which is shrunken estimation formula. Two numerical simulation methods are used firstly to solve this model: Mean Monte Carlo Runge-Kutta and Mean Latin Hypercube Runge-Kutta Methods. Then two approximate simulation methods are proposed to solve the current study. The results of the proposed approximate shrunken methods and the numerical
... Show More