Precise forecasting of pore pressures is crucial for efficiently planning and drilling oil and gas wells. It reduces expenses and saves time while preventing drilling complications. Since direct measurement of pore pressure in wellbores is costly and time-intensive, the ability to estimate it using empirical or machine learning models is beneficial. The present study aims to predict pore pressure using artificial neural network. The building and testing of artificial neural network are based on the data from five oil fields and several formations. The artificial neural network model is built using a measured dataset consisting of 77 data points of Pore pressure obtained from the modular formation dynamics tester. The input variables are vertical depth, bulk density, and acoustic compressional wave velocity, with the activation function of tangent sigmoid. The average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient (R2) were applied for evaluation. The results revealed that the best artificial neural network structure was (3-8-1), with average percent error, absolute average percent error, mean square error, root mean square error, and correlation coefficient R2 of -0.52, 1.01, 3994, 63.2, and 0.995, respectively. A C++ computer program is provided with a calculation sample to simplify the implementation of the proposed artificial neural network. The dependency degree of pore pressure on each input parameter is investigated, revealing the highest impact of depth on pore pressure prediction. Furthermore, to check the validity of the artificial neural network against the different datasets, the artificial neural network performance was compared with 84 new data points and showed an advantage over the existing models. The very good performance of artificial neural network for different types of oil reservoirs and formations reveals an insignificant effect of lithology on the prediction of pore pressure.
Water pollution is an issue that can be exacerbated by drought as increased concentrations of unwanted substances are a consequence of lower water levels. Polluted water that flows into natural marshlands leads to the deposition of pollutants in the interior of the marsh. Here we present evidence that the interior of the Central Marsh (CM) in southern Iraq suffers from higher levels of pollution than areas closer to the source of water entering the marsh (the Euphrates River). A 1.7m embankment that halts the flow of the Euphrates is only infrequently breached and so the CM is effectively the terminal destination of the waters (and their associated pollutants and agricultural waste) flowing from the West of Iraq.
A range of water
... Show MoreMishrif Formation was deposited during The Cenomanian-Early Turonian, which has been studied in selected Tuba and Zubair OilFields, these wells (TU-5, TU-24, TU-40, ZB-41, ZB-42, and ZB-46) are located within Mesopotamian basin at southern Iraq and considered as a major carbonate reservoir in Iraq and the Arabian Gulf. The palaeontological investigations mainly depending on benthonic foraminifera of the studied wells of Tuba and Zubair Oilfields in Mishrif Formation, twenty-four species belonging to fourteen genera are recognized of benthonic foraminifera, which has been recognized through this study, especially benthonic foraminiferal, indicating four zones as follows:
<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope
... Show MoreThe purpose of this study is to examine the dimensions of strategic intent (SI; see Appendix 1) according to the Hamel and Prahalad model as a building for the future, relying on today’s knowledge-based and proactive strategic directions of management as long-term and deep-perspective creative directions, objective vision and rational analysis, integrative in work, survival structure and comprehensiveness in perception.
The quantitative approach was used based on research, detection and proof, as data were collected from leader
This research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreTo determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35
Huwaiza marsh is considered the largest marsh in the southern part of Iraq. It is located between 31° and 31.75° latitude and extends over the Iraqi-Iranian border; but the largest part lies in Iraq. It is located to the east of Tigris River in Messan and Basra governorates.
In this research, the variation of some water quality parameters at different locations of Huwaiza marsh were studied to find out its efficacy in the treatment of the contamination coming from the wastewater outfall of Kahlaa brokendown sewage treatment plant which lies on the Kahlaa River. This rive is the main feeder of Huwaiza marsh. Ten water quality sampling locations were chosen in this marsh. The water samples were taken during 2009 for three months; Janu
Ecosystems provide humans with services that include benefits from food, fresh water, climate regulation, and socio-economic assets. The Mesopotamian marshlands are among the largest wetlands in the Middle East and they provide various benefits. However, ecosystem services of the Marshlands are consistently undervalued in national economic analysis and decision making. This study focusses on the Central Marshes, the first National Park in Iraq, and is the first attempt at valuing a series of ecosystem services from a valuable natural ecosystem in Iraq. We adopted the Toolkit for Ecosystem Services Site-Based Assessment (TESSA) for the determination of biophysical and economic values of services at the site level. Data on key ecosystem se
... Show MoreOne eighth of the bird species in the world is considered globally threatened; the avifauna of Iraq comprises 409 species and is considered as the major indicator of the health of Iraq’s biological resources. The Iraqi geography falls into five main regions among which is the desert and semi-desert areas which cover much of the country area. Al-Najaf desert is still one of the poorly known regions from the biodiversity point of view. Birds of conservation concern are detected in Al-Najaf desert during 31 field trips to 20 sites conducted from August 2018 to April 2020, (citing literature records, and personal interviews with locals).The factors caused the bird numbers to decline in Al-Najaf desert include hunting and trapping, logging,
... Show More