Electrochemical method was used to prepare carbon quantum dots (CQDs). Size of matter was nature when evaluate via X-ray diffraction (XRD). A distinct peak at 2θ equal to 31.6° and three other small peaks at 38.28°, 56.41° and 66.12° were observed. The measures of Fourier Transform Infrared Spectroscopy (FTIR) showed the bonds in the transmittance spectrum are manufactured with carbon nanostructures in view. The first peaks are the O–H stretching vibration bands at (3417 and 2922) cm−1, (C–O–H at 1400, and 1317) cm−1, (C–H), (C=C), (C–O–H), (C=O), and (C–O) bonds at 2850, 1668, 1101, and 1026 cm−1 sequentially. The transmission electron microscopy (TEM) results presented that the spherical CQDs are in shape and on average possess a restricted distribution of sizes of fairly 10 nm. Also, optical properties were investigated by the UV–VIS absorption spectrum, peak at 225 nm showed absorption spectrum of it. Photoluminescence emission was studied using FS-Spectrometer operating at 364 nm, 374 nm, 384 nm, 384 nm, and 404 nm wavelength to excite a broad range of quantum dots. The PL test of the top of the surface of CQDs permitted the expectation that an excessive exciting will occur at the CQDs, where the upper layer has large energy gap with small quantum dots. As a result, the optical constants are analyzed, such as the energy gap, the extinction coefficient, and photoluminescence band and its applicability in optoelectronics.
Because of Cadmium selenide quantum dots (CdSe quantum dots) has a tuning energy gap in the visible light range, therefore; it is provided a simple theoretical model for the absorption coefficient of CdSe quantum dots, where the absorption coefficient determines the extent to which the light of a material can penetrate a specific wavelength before it is absorbed. CdSe quantum dots have an energy gap can be controlled through two effects: the temperature and the dot size of them. It is found that; there is an absorption threshold for each directed wavelength, where CdSe quantum dots begin to absorb the visible spectrum at a size of 1.4 nm at room temperature for a directed wavelength 3
Quantum dots of CdSe, CdS and ZnS QDs were prepared by chemical reaction and used to fabricate organic quantum dot hybrid junction device. QD-LEDs were fabricated using ITO/TPD: PMMA/CdSe/Al, ITO/TPD: PMMA/CdS/Al and ITO/TPD: PMMA/ZnS/Al QDs devices which synthesized by phase segregation method. The hybrid white light emitting devices consists, of two-layers deposited successively on the ITO glass substrate; the first layer was of N, N’-bis (3-methylphenyl)-N, N’-bis (phenyl) benzidine (TPD) polymer mixed with polymethyl methacrylate (PMMA) polymers in ratio 1:1, while the second layer was 0.5wt% from each type of the (CdSe, CdS and ZnS) QDs for each device.The optical properties of QDs were characterized by UV-Vis. and photolum
... Show MoreIn this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.
Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect
... Show MoreSol-gel derived CuCo-oxide coatings as solar selective surfaces, synthesized onto aluminium substrates at various annealing temperatures, are analysed by correlating their structural, chemical bonding states, and surface morphological topographies. As the annealing progressed, all the coatings displayed a Cu0.56Co2.44O4 (ICSD 78-2175) phase with preferential orientation along (400) reflection plane. Rietveld refinement of X-ray diffraction (XRD) data indicate that residual stress and microstrains developed around the coating surfaces are reduced resulting in mechanically stable thin films. Enhancement of the crystallite size and preferred orientation of the surface were confirmed via XRD, field emission scanning electron microscopy (FESEM),
... Show MoreThin filis have been prepared from the tin disulphide (SnS2 ), the pure and the doped with copper (SnS2:Cu) with a percentages (1,2,3,4)% by using ahemical spray pyrolysis techniqee on substrate of glass heated up to(603K)and sith thicknesses (0.7±0.02)?m ,after that the films were treated thermally with a low pressure (10-3mb) and at a temperature of (473K) for one hour. The influence of both doping with copper and the thermal treatment on some of the physical characteristics of the prepared films(structural and optical) was studied. The X-ray analysis showed that the prepared films were polycrystalline Hexagonal type. The optical study that included the absorptance and transmitance spectra in the weavelength range (300-900)nm
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show More