Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
This study was conducted to estimate some heavy metals cadmium, lead, nickel and iron in 15 samples of Iraqi honey with 3 replicates for each sample which were collected from apiaries near potential contamination areas in five Iraqi governorates, including Baghdad, Karbala, Babylon, Diyala and Salah al-Din. The atomic absorption technique was used to estimate the concentrations of heavy metals, the results showed that there were significant differences at (P≤0.05) between the concentrations of these elements in the honey samples, the highest concentrations of cadmium 0.123 mg/kg were recorded in Baghdad, near the petrochemical production complex, lead 4.657 mg/kg and nickel 0.023 mg/kg in Babylon near the power plant, iron was
... Show MoreThe accumulation of toxic elements in vegetables and melons grown in agriculture, Brassica rapa - turnip, Solanum lycopersicum - tomato, Citrullus lanatus - watermelon, Capsicum annuum - bell pepper, Daucus carota - carrots, Cucurbita pepo - pumpkin, Cucumis melo - melon, and also Prunus armeniaca - apricot from fruit trees were analyzed. The excess of maximum allowable concentrations in agricultural crops of the element As by 1.65-1.75, Cd - 1.6-2.3, Cr -1.2-2.35, Cu -1.6-3.3, Ni - 1.16-3.53, Pb - 1.54-3.08, Al - 1.36-3.5, Sb - 2.0-33, Se - 1.1-3.3 times was established. The maximum allowable concentration of mercury in vegetables and melons was equal to 0.02 mg/kg,
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show MoreAbstract
In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA) such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experi
... Show MoreModified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.
... Show MoreThe development of a new, cheap, efficient, and ecofriendly adsorbents has become an important demand for the treatment of waste water, so nano silica is considered a good choice. A sample of nanosilica (NS) was prepared from sodium silicate as precursor and the nonionic surfactant Tween 20 as a template. The prepared sample was characterized using various characterization techniques such as FT-IR, AFM, SEM and EDX analysis. The spectrum of FTIR confirms the presence of silica in the sample, while SEM analysis of sample shows nanostructures with pore ranging (2-100nm).The adsorptive properties of this sample were studied by removing Congo red dye (CR) from aqueous solution. Batch experimental methods were carried o
... Show MoreThe nanostructured Manganese dioxide/Carbon fiber (CF) composite electrode was prepared galvanostatically using a facile method of anodic electrodeposition by varying the reaction time and MnSO4 concentration of the electrochemical solution. The effects of these parameters on the structures and properties of the prepared electrode were evaluated. For determining the crystal characteristics, morphologies, and topographies of the deposited MnO2 films onto the surfaces of carbon fibers, the X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and atomic force microscopy (AFM) techniques were used, respectively. It found that the carbon fibers were coated with γ-MnO2 with a density that increased with increasing the de
... Show MoreThis paper aims to study the biosorption for removal of lead, cadmium, copper and arsenic ions using algae as a biosorbent. A series of experiments were carried out to obtain the breakthrough data in a fluidized bed reactor. The minimum fluidization velocities of beds were found to be 2.27 and 3.64 mm/s for mish sizes of 0.4-0.6 and 0.6-1 mm diameters, respectively. An ideal plug flow model has been adopted to characterize the fluidized bed reactor. This model has been solved numerically using MATLAB version 6.5. The results showed a well fitting with the experimental data. Different operating conditions were varied: static bed height, superficial velocity and particle diameter. The breakthrough curves were plotted for each metal. Pb2+ s
... Show More