Environmental pollution is experiencing an alarming surge within the global ecosystem, warranting urgent attention. Among the significant challenges that demand immediate resolution, effective treatment of industrial pollutants stands out prominently, which for decades has been the focus of most researchers for sustainable industrial development aiming to remove those pollutants and recover some of them. The liquid membrane (LM) method, specifically electromembrane extraction (EME), offers promise. EME deploys an electric field, reducing extraction time and energy use while staying eco-friendly. However, there's a crucial knowledge gap. Despite strides in understanding and applying EME, optimizing it for diverse industrial pollutants and environmental conditions remains uncharted. Future research must expand EME's applicability, assess its environmental impact versus other methods, and boost scalability, cost-effectiveness, and energy efficiency in industry. Advances in novel liquid membrane materials can enhance extraction efficiency and selectivity, aiming to provide efficient, sustainable industrial pollutant treatment. This research provides a review of the existing practices in the field of liquid membranes when coupled with the application of an electric field.
Abstract
In this study, mucilage was extracted from Malabar spinach and tested for drag-reducing properties in aqueous liquids flowing through pipelines. Friction produced by liquids flowing in turbulent mode through pipelines increase power consumption. Drag-reducing agents (DRA) such as polymers, suspended solids and surfactants are used to reduce power losses. There is a demand for natural, biodegradable DRA and mucilage is emerging as an attractive alternative to conventional DRAs. Literature review revealed that very little research has been done on the drag-reducing properties of this mucilage and there is an opportunity to explore the potential applications of mucilage from Malabar spinach. An experi
... Show MoreThe development of a new, cheap, efficient, and ecofriendly adsorbents has become an important demand for the treatment of waste water, so nano silica is considered a good choice. A sample of nanosilica (NS) was prepared from sodium silicate as precursor and the nonionic surfactant Tween 20 as a template. The prepared sample was characterized using various characterization techniques such as FT-IR, AFM, SEM and EDX analysis. The spectrum of FTIR confirms the presence of silica in the sample, while SEM analysis of sample shows nanostructures with pore ranging (2-100nm).The adsorptive properties of this sample were studied by removing Congo red dye (CR) from aqueous solution. Batch experimental methods were carried o
... Show MoreThe Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec
This work focused on anthropogenic influences of the trace metals distribution in the soils of Kirkuk city. Sequential extraction technique was used to determine the distribution of the chemical fractions of Ag, Cd, Co, Cu, Ni, Pb, Zn, As, Cr and V in soil of Kirkuk city. This area is affected mainly by burning oil trash. Results show that these heavy metals were primarily restricted to surface horizons and mostly associated with the residual fraction (28.8 – 50%). The remnant fractions (13.8 – 33.1%) linked to the organic matter, 7.9 – 27.2% was bound to Fe-Mn oxide, 0.7 – 27.9 was bound to carbonate. Only a small amount of the total metals in the soil is exchangeable (0.5 – 4.2%) and water soluble (0 – 4.1%) fractions.
... Show MoreComposting is one of the solid waste management (SWM) methods where the organic component decomposed biologically under controlled conditions. In this study, a 0.166 m3 bioreactor tank was designed to compose 59.2Kg of simulated common municipal solid food waste having a bulk density, organic matter, organic carbon, pH, nitrogen content, C/N and nitrification index (NH4-N/ NO3-N) of 536.62 kg/m3, 62.34%, 34.76%, 6.53, 1.86%, 23 and 0.34 respectively. The bioreactor operated aerobically for 30 days, and anaerobically for 70 days, until the end of the composting process. Results proved that the composting process could reduce the mass of the waste by 69%. Nitrogen content,
... Show MoreThere are many aims of this book: The first aim is to develop a model equation that describes the spread of contamination through soils which can be used to determine the rate of environmental contamination by estimate the concentration of heavy metals (HMs) in soil. The developed model equation can be considered as a good representation for a problem of environmental contamination. The second aim of this work is to design two feed forward neural networks (FFNN) as an alternative accurate technique to determine the rate of environmental contamination which can be used to solve the model equation. The first network is to simulate the soil parameters which can be used as input data in the second suggested network, while the second network sim
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe best optimum temperature for the isolate was 30○C while the pH for the maximum mineral removal was 6. The best primary mineral removal was 100mg/L, while the maximum removal for all minerals was obtained after 8 hrs, and the maximum removal efficiency was obtained after 24 hrs. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/ minute. Inoculums of 5ml/ 100ml which contained 106 cell/ ml showed maximum removal for the isolate.
Five heavy metals, namely Cd, Cu, Fe, Mn, and Pb in the surface water and through the water column were studied at 10 selected stations in the Razzazah lake and Karbala drainage canal for the period between November 1990 to October 1991*. pH and total hardness were also measured. Lead was found to be the highest in concentration as overall average values, followed by an manganese, iron, copper then cadmium at the surface as well as along the water column. All the studied metals were below or close to the maximum allowed limits of Iraqi standards for inland water. The spatial and seasonal variations were discussed.