Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model wa
... Show Moreان من اهم القضايا التي تثيرها المعرفة البشرية في تجلياتها، وتعبيراتها المفاهيمية، تكمن في مدى تأصلها وانتمائها الى البنى والتشكيلات الموضوعية (في مستوياتها التاريخية) التي تسعى لتفسيرها وادراكها ومضاهاتها. فالينبوع الذي يغرف منه الفكر مادته هو الكيان الاجتماعي المتموضع خارج الوعي والايدولوجيا.
ان قدرة الوعي على ادراك الواقع الموضوعي بخصائصه العامة يشكل الشرط الضروري لاكتساب الوعي ل
... Show MoreTarget tracking is a significant application of wireless sensor networks (WSNs) in which deployment of self-organizing and energy efficient algorithms is required. The tracking accuracy increases as more sensor nodes are activated around the target but more energy is consumed. Thus, in this study, we focus on limiting the number of sensors by forming an ad-hoc network that operates autonomously. This will reduce the energy consumption and prolong the sensor network lifetime. In this paper, we propose a fully distributed algorithm, an Endocrine inspired Sensor Activation Mechanism for multi target-tracking (ESAM) which reflecting the properties of real life sensor activation system based on the information circulating principle in the endocr
... Show MoreA simulation study is used to examine the robustness of some estimators on a multiple linear regression model with problems of multicollinearity and non-normal errors, the Ordinary least Squares (LS) ,Ridge Regression, Ridge Least Absolute Value (RLAV), Weighted Ridge (WRID), MM and a robust ridge regression estimator MM estimator, which denoted as RMM this is the modification of the Ridge regression by incorporating robust MM estimator . finialy, we show that RMM is the best among the other estimators
The present paper aims at finding out the Variance Ratio of Trips Set Out by Scholars of Both Marrouzzeen and Baihaq .The researcher has come up with conclusion including certain findings ,one of which is that the trip is considered an essential base with high effectiveness since the old times and has been evolved .This means that the trip has been the main source of knowledge and sciences from the scholars directly .This had driven the scholars of both Baihaq and Marrouz cities .It has been noticed , though this paper, that the number of the Marrouz scholars who visited was less than those of Baihaq . The researcher has focused on their meetings or conferences and investigated what has been going on in such meetin
... Show MoreThe present paper aims at finding out the Variance Ratio of Trips Set Out by Scholars of Both Marrouzzeen and Baihaq .The researcher has come up with conclusion including certain findings ,one of which is that the trip is considered an essential base with high effectiveness since the old times and has been evolved .This means that the trip has been the main source of knowledge and sciences from the scholars directly .This had driven the scholars of both Baihaq and Marrouz cities .It has been noticed , though this paper, that the number of the Marrouz scholars who visited was less than those of Baihaq . The researcher has focused on their meetings or conferences and investigated what has been going on in suc
... Show MoreIn order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.
In this research, the multi-period probabilistic inventory model will be applied to the stores of raw materials used in the leather industry at the General Company for Leather Industries. The raw materials are:Natural leather includes cowhide, whether imported or local, buffalo leather, lamb leather, goat skin, chamois (raw materials made from natural leather), polished leather (raw materials made from natural leather), artificial leather (skai), supplements which include: (cuffs - Clocks - hands - pockets), and threads.This model was built after testing and determining the distribution of demand during the supply period (waiting period) for each material and completely independently from the rest of the materials, as none of the above mate
... Show More