A process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nanoparticles was (2-100) nm.
In this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of
... Show MoreIn this study, NaOH dissolution method was applied to dissolve cellulose fibers which extracted from date palm fronds (type Al-Zahdi) taken from Iraqi gardens. In this process, (NaOH)-solution is brought into contact with the cellulose fibers at low temperature. Experiments were conducted with different concentrations of NaOH (4%, 6%, 8% and12%) weight percent at two cooling bath temperatures (-15 oC) and (-20oC). Maximum cellulose dissolution was 23 wt% which obtained at 8 wt% concentration of NaOH and at cooling bath temperature of -20oC. In order to enhance the cellulose fibers dissolution, the sample was pretreated with Fenton's reagent which consists of hydrogen peroxide (H2O2), oxalic acid (C2H2O4) and ferrous sulfate (FeSO4). This
... Show MoreAbstract: Colloidal gold nanoparticles (ringworm Palm or in the form of paper willow) have been prepared from HAuCl4 containing aqueous solution by hot chemical reduction method. The colloidal gold nanoparticles were characterized by SEM, EDX, and UV-VIS absorption spectroscopy. It was found that the variation of reduction time from boiling point affects the size of the nanoparticles and also in chemical reduction approach the size of nanoparticles can be controlled by varying the amount of variation the volume of reductant material with respect to the volume of HAuCL4.
The physical and morphological characteristics of porous silicon (PS) synthesized via gas sensor was assessed by electrochemical etching for a Si wafer in diluted HF acid in water (1:4) at different etching times and different currents. The morphology for PS wafers by AFM show that the average pore diameter varies from 48.63 to 72.54 nm with increasing etching time from 5 to 15min and from 72.54 to 51.37nm with increasing current from 10 to 30 mA. From the study, it was found that the gas sensitivity of In2O3: CdO semiconductor, against NO2 gas, directly correlated to the nanoparticles size, and its sensitivity increases with increasing operating temperature.
Ethanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomi
... Show MoreThis study employed the biosynthetic technique for creating vanadium nanoparticles (VNPs), which are affordable and user-friendly; VNPs was synthesized using vanadium sulfate (VOSO4.H2O) and a plant extract derived from Fumaria Strumii Opiz (E2) at a NaOH concentration of 0.1 M. This study aims to investigate the potential applications of utilizing an adsorbent for metal ions to achieve environmentally friendly production and assess its antibacterial activity and cytotoxicity. The reaction was conducted in an alkaline environment with a pH range of 8–12. The resulting product was subjected to various characterization techniques, including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, x-ray diffraction (XRD), t
... Show MoreEthanol as a solvent, a precursor of titanium isopropoxide and a stabilizer of either hydrochloric acid or ammonium hydroxide was used to prepare a titanium dioxide aqueous solution. The aqueous solutions with different values of pH and the morphology of the resultant reaction of the nanoparticles of titanium dioxide were investigated. The X-ray diffraction showed that at low temperatures and with acidic solutions, rutile structures are more favorable to grow on titanium dioxide synthesized, while at low and average temperatures and with base solutions, anatase phase is more pronounced. The crystalline form and the re-confirmation of the crystallite size growth were observed by the scanning electron microscopy. The atomic force micr
... Show MoreIn this research, Argon gas was used to generate atmospheric plasma in the manufacture of platinum nanomaterials, to study the resultant plasma spectrum and to calculate the cellular toxicity of those manufactured nanomaterials. This research is keen on the generation of nonthermal atmospheric pressure plasma using aqueous platinum salts (H2PtCl6 6H2O) with different concentrations and exposure of cold plasma with a different time period used to produce platinum nanoparticles, to ensure typical preparation of nanoparticles. Visible UV and X-rays were performed for this purpose, and the diameter of the system probe was (1[Formula: see text]mm) with the Argon gas flow of
... Show MoreSpecific microorganisms can produce bacterial nanocellulose (BNC), with acetic acid bacteria (AAB) being the most active producer. The family Acetobacteraceae includes the obligate aerobic, motile acetic acid bacteria. The BNC has attracted a lot of interest across a wide range of industries, including pharmaceuticals, due to its flexible characteristics, properties, and advantages. The present study was conducted to purify and characterize BNC produced from AAB isolated from apple vinegar. Bacterial nanocellulose was synthesized using a natural date palm liquid medium at pH 6 at 30°C for 8–10 days. The bacterial cellulose produced was then purified using a technique involving 0.1 M sodium hydroxide. To ascertain the surface mor
... Show MoreThe presence of hydrocarbons in the soil is considered one of the main problems of pollution. In our current study, eight samples isolated from soil saturated with hydrocarbons were taken from different areas of Baghdad, Iraq. In this study, 5 isolates belonging to Pseudomonas aeruginosa by 99%, 4 isolates to Klebsiella pneumoniae by 98%, and 3 isolates to Enterobacter hormaechei by 97% were diagnosed in different ways. A molecular examination was also conducted by 16sRNA. We recorded P. aeruginosa, K. Pneumoniae and E. hormaechei as new local isolates in NCBI. In addition, a comparison was made between our isolates and the global isolates to determine the degree of convergence in the evolutionary line. The genes alkB and nahAc7 were diagno
... Show More