Preferred Language
Articles
/
oBe1uI4BVTCNdQwCyFf7
Bayesian Computational Methods of the Logistic Regression Model
...Show More Authors
Abstract<p>In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.</p>
Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
The Bayesian Estimation for The Shape Parameter of The Power Function Distribution (PFD-I) to Use Hyper Prior Functions
...Show More Authors

The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Iop Conference Series: Materials Science And Engineering
Study of different geostatistical methods to model formation porosity (Cast study of Zubair formation in Luhais oil field)
...Show More Authors
Abstract<p>This study is concerned with making comparison in using different geostatistical methods for porosity distribution of upper shale member - Zubair formation in Luhais oil field which was chosen to study.</p><p>Kriging, Gaussian random function simulation and sequential Gaussian simulation geostatistical methods were adopted in this study. After preparing all needed data which are contour map, well heads of 12 wells, well tops and porosity from CPI log. Petrel software 2009 was used for porosity distribution of mentioned formation in methods that are showed above. Comparisons were made among these three methods in order to choose the best one, the comparing cri</p> ... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Feb 20 2022
Journal Name
Papers In Physics
Electronic and optical properties of nickel-doped ceria: A computational modelling study
...Show More Authors

Cerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,

... Show More
Preview PDF
Publication Date
Thu Aug 01 2013
Journal Name
Micron
Computational investigation of electron path inside SEM chamber in mirror effect phenomenon
...Show More Authors

View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Feb 20 2022
Journal Name
Papers In Physics
Electronic and optical properties of nickel-doped ceria: A computational modelling study
...Show More Authors

Cerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,

... Show More
View Publication Preview PDF
Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2017
Journal Name
Australian Journal Of Basic And Applied Sciences
Block-based Image Steganography for Text Hiding Using YUV Color Model and Secret Key Cryptography Methods
...Show More Authors

Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Using Quadratic Form Ratio Multiple Test to Estimate Linear Regression Model Parameters in Big Data with Application: Child Labor in Iraq
...Show More Authors

              The current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances.  From the diversity of Big Data variables comes many challenges that  can be interesting to the  researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Between Partial Least Square Regression(PLSR) and Tree Regression by Using Simulation(RT).
...Show More Authors

This research discussed, the process of comparison between the regression model of partial least squares and tree regression, where these models included two types of statistical methods represented by the first type "parameter statistics" of the partial least squares, which is adopted when the number of variables is greater than the number of observations and also when the number of observations larger than the number of variables, the second type is the "nonparametric statistic" represented by tree regression, which is the division of data in a hierarchical way. The regression models for the two models were estimated, and then the comparison between them, where the comparison between these methods was according to a Mean Square

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Spatial Statistics
Efficient Bayesian modeling of large lattice data using spectral properties of Laplacian matrix
...Show More Authors

Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati

... Show More
View Publication
Scopus (9)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Wed Jul 01 2020
Journal Name
Proceedings Of The Institution Of Mechanical Engineers, Part H: Journal Of Engineering In Medicine
Comparison study of classification methods of intramuscular electromyography data for non-human primate model of traumatic spinal cord injury
...Show More Authors

Traumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental

... Show More
View Publication
Scopus (4)
Crossref (4)
Scopus Clarivate Crossref