In this paper, we will discuss the performance of Bayesian computational approaches for estimating the parameters of a Logistic Regression model. Markov Chain Monte Carlo (MCMC) algorithms was the base estimation procedure. We present two algorithms: Random Walk Metropolis (RWM) and Hamiltonian Monte Carlo (HMC). We also applied these approaches to a real data set.
In this study, the turbulent buoyancy driven fluid flow and heat transfer in a differentially heated rectangular enclosure filled with water is quantified numerically. The two dimensional governing differential equations are discretized using the finite volume method. SIMPLE algorithm is employed to obtain stabilized solution for high Rayleigh numbers by a computational code written in FORTRAN language. A parametric study is undertaken and the effect of Rayleigh numbers (1010 to 1014), the aspect ratio (30, 40 and 50), and the tilt angle (10o to 170o ) on fluid flow and heat transfer are investigated. The results of the adopted model in the present work is compared with previously published results and a qualitative agreement and a good
... Show MoreDesign sampling plan was and still one of most importance subjects because it give lowest cost comparing with others, time live statistical distribution should be known to give best estimators for parameters of sampling plan and get best sampling plan.
Research dell with design sampling plan when live time distribution follow Logistic distribution with () as location and shape parameters, using these information can help us getting (number of groups, sample size) associated with reject or accept the Lot
Experimental results for simulated data shows the least number of groups and sample size needs to reject or accept the Lot with certain probability of
... Show MoreThere are many methods of forecasting, and these methods take data only, analyze it, make a prediction by analyzing, neglect the prior information side and do not considering the fluctuations that occur overtime. The best way to forecast oil prices that takes the fluctuations that occur overtime and is updated by entering prior information is the Bayesian structural time series (BSTS) method. Oil prices fluctuations have an important role in economic so predictions of future oil prices that are crucial for many countries whose economies depend mainly on oil, such as Iraq. Oil prices directly affect the health of the economy. Thus, it is necessary to forecast future oil price with models adapted for emerging events. In this article, we st
... Show MoreThis research aims to review the importance of estimating the nonparametric regression function using so-called Canonical Kernel which depends on re-scale the smoothing parameter, which has a large and important role in Kernel and give the sound amount of smoothing .
We has been shown the importance of this method through the application of these concepts on real data refer to international exchange rates to the U.S. dollar against the Japanese yen for the period from January 2007 to March 2010. The results demonstrated preference the nonparametric estimator with Gaussian on the other nonparametric and parametric regression estima
... Show MoreCerium oxide (CeO2), or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the eect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreCerium oxide CeO2, or ceria, has gained increasing interest owing to its excellent catalytic applications. Under the framework of density functional theory (DFT), this contribution demonstrates the effect that introducing the element nickel (Ni) into the ceria lattice has on its electronic, structural, and optical characteristics. Electronic density of states (DOSs) analysis shows that Ni integration leads to a shrinkage of Ce 4f states and improvement of Ni 3d states in the bottom of the conduction band. Furthermore, the calculated optical absorption spectra of an Ni-doped CeO2 system shifts towards longer visible light and infrared regions. Results indicate that Ni-doping a CeO2 system would result in a decrease of the band gap. Finally,
... Show MoreA group of acceptance sampling to testing the products was designed when the life time of an item follows a log-logistics distribution. The minimum number of groups (k) required for a given group size and acceptance number is determined when various values of Consumer’s Risk and test termination time are specified. All the results about these sampling plan and probability of acceptance were explained with tables.
In this paper, Bayesian estimator for the parameter and reliability function of inverse Rayleigh distribution (IRD) were obtained Under three types of loss function, namely, square error loss function (SELF), Modified Square error loss function (MSELF) and Precautionary loss function (PLF),taking into consideration the informative and non- informative prior. The performance of such estimators was assessed on the basis of mean square error (MSE) criterion by performing a Monte Carlo simulation technique.