The islamic legitimacy,imposition and of al-zakkat(regular charity) are well
known matters to the whole muslims but being in love with the present life and
worldly existence and being in scare of the death made some of the moslems to lag
behind and delay of keeping with that matter (regular charity) because the mony al
wayes was the reason for the man happiness in the present life allah makes al-zakat
(regular charity) one of the granting remissionns of the moslems people sins in return
for that allah promised the moslems to honored them with the eternal life in in the
paradise where is the gardens beneath which rivers flow so that I decided to write in
this matter of couarse after trust and recommend in god and h
The concept of fully pseudo stable Banach Algebra-module (Banach A-module) which is the generalization of fully stable Banach A-module has been introduced. In this paper we study some properties of fully stable Banach A-module and another characterization of fully pseudo stable Banach A-module has been given.
This paper deals with the F-compact operator defined on probabilistic Hilbert space and gives some of its main properties.
This research deals with Salinger's concerns about predicaments of youth like Franny and her brother Zooey. Their predicaments are related to identity, family, religion, beliefs, life and death, education, source of power, and society. It illustrates adults struggle to adapt themselves to live a normal social American life. It proves necessary to balance their coexistence in a materialistic milieu to achieve spiritual peace, tranquility, and stability.
In this paper, the concept of semi-?-open set will be used to define a new kind of strongly connectedness on a topological subspace namely "semi-?-connectedness". Moreover, we prove that semi-?-connectedness property is a topological property and give an example to show that semi-?-connectedness property is not a hereditary property. Also, we prove thate semi-?-irresolute image of a semi-?-connected space is a semi-?-connected space.
The concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.