In this paper, the concept of contraction mapping on a -metric space is extended with a consideration on local contraction. As a result, two fixed point theorems were proved for contraction on a closed ball in a complete -metric space.
The aim of this paper is to approximate multidimensional functions f∈C(R^s) by developing a new type of Feedforward neural networks (FFNS) which we called it Greedy ridge function neural networks (GRGFNNS). Also, we introduce a modification to the greedy algorithm which is used to train the greedy ridge function neural networks. An error bound are introduced in Sobolov space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result in [1]).
The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matri
... Show MoreIn This paper, we have been approximated Grűnwald-Letnikov Derivative of a function having m continuous derivatives by Bernstein Chlodowsky polynomials with proving its best approximation. As well as we have been solved Bagley-Torvik equation and Fokker–Planck equation where the derivative is in Grűnwald-Letnikov sense.
In this paper, we introduce and study the concept of a new class of generalized closed set which is called generalized b*-closed set in topological spaces ( briefly .g b*-closed) we study also. some of its basic properties and investigate the relations between the associated topology.
In this paper, new concepts which are called: left derivations and generalized left derivations in nearrings have been defined. Furthermore, the commutativity of the 3-prime near-ring which involves some
algebraic identities on generalized left derivation has been studied.
A complete metric space is a well-known concept. Kreyszig shows that every non-complete metric space can be developed into a complete metric space , referred to as completion of .
We use the b-Cauchy sequence to form which “is the set of all b-Cauchy sequences equivalence classes”. After that, we prove to be a 2-normed space. Then, we construct an isometric by defining the function from to ; thus and are isometric, where is the subset of composed of the equivalence classes that contains constant b-Cauchy sequences. Finally, we prove that is dense in , is complete and the uniqueness of is up to isometrics
Truncated distributions arise naturally in many practical situations. It’s a conditional distribution that develops when the parent distribution's domain is constrained to a smaller area. The distribution of a right truncated is one of the types of a single truncated that is restricted within a specific field and usually occurs when the specified period for the study is complete. Hence, this paper introduces Right Truncated Inverse Generalized Rayleigh Distribution (RTIGRD) with two parameters is introduced. Then, provided some properties such as; (probability density function, cumulative distribution function (CDF), survival function, hazard function, rth moment, mean, variance, Moment Generating Function, Skewness, kurtosi
... Show More