Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
The research deals with Environmental Management and how to develop its programs with the use of Knowledge Management, the environmental programs that integrate with processes can add strategic value to business through improving rates of resource utilization , efficiencies , reduce waste, use risk management, cut costs, avoid fines and reduce insurance. All these activities and processes can improve it through knowledge management, the optimal usage for all organizations information , employ it in high value and share it among all organizations members who involves in modify its strategy . Choosing suitable environmental management information system, develop it and modify it with organization processes, can greatly serve the en
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreDue to the difficulties that Iraqi students face when writing in the English language, this preliminary study aimed to improve students' writing skills by using online platforms remotely. Sixty first-year students from Al-Furat Al–Awsat Technical University participated in this study. Through these platforms, the researchers relied on stimuli, such as images, icons, and short titles to allow for deeper and more accurate participations. Data were collected through corrections, observations, and feedback from the researchers and peers. In addition, two pre and post-tests were conducted. The quantitative data were analysed by SPSS statistical Editor, whereas the qualitative data were analyzed using the Piot table, an Excel sheet. The resu
... Show MoreMedian filter is adopted to match the noise statistics of the degradation seeking good quality smoothing images. Two methods are suggested in this paper(Pentagonal-Hexagonal mask and Scan Window Mask), the study involved modified median filter for improving noise suppression, the modification is considered toward more reliable results. Modification median filter (Pentagonal-Hexagonal mask) was found gave better results (qualitatively and quantitatively ) than classical median filters and another suggested method (Scan Window Mask), but this will be on the account of the time required. But sometimes when the noise is line type the cross 3x3 filter preferred to another one Pentagonal-Hexagonal with few variation. Scan Window Mask gave bett
... Show MoreDigital image is widely used in computer applications. This paper introduces a proposed method of image zooming based upon inverse slantlet transform and image scaling. Slantlet transform (SLT) is based on the principle of designing different filters for different scales.
First we apply SLT on color image, the idea of transform color image into slant, where large coefficients are mainly the signal and smaller one represent the noise. By suitably modifying these coefficients , using scaling up image by box and Bartlett filters so that the image scales up to 2X2 and then inverse slantlet transform from modifying coefficients using to the reconstructed image .
&nbs
... Show MoreDue to the availability of technology stemming from in-depth research in this sector and the drawbacks of other identifying methods, biometrics has drawn maximum attention and established itself as the most reliable alternative for recognition in recent years. Efforts are still being made to develop a user-friendly system that is up to par with security-system requirements and yields more reliable outcomes while safeguarding assets and ensuring privacy. Human age estimation and Gender identification are both challenging endeavours. Biomarkers and methods for determining biological age and gender have been extensively researched, and each has advantages and disadvantages. Facial-image-based positioning is crucial for many application
... Show More