Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
Two unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as
... Show MoreRecently, biometric technologies are used widely due to their improved security that decreases cases of deception and theft. The biometric technologies use physical features and characters in the identification of individuals. The most common biometric technologies are: Iris, voice, fingerprint, handwriting and hand print. In this paper, two biometric recognition technologies are analyzed and compared, which are the iris and sound recognition techniques. The iris recognition technique recognizes persons by analyzing the main patterns in the iris structure, while the sound recognition technique identifies individuals depending on their unique voice characteristics or as called voice print. The comparison results show that the resul
... Show MoreData Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available and the increasingly complex requirements of system software whose functions can adapt to changing needs to gain the trust of its users, an approach is needed in a continuous software engineering process. This need drives the emergence of new challenges in the discipline of requirements engineering to meet the required changes. The problem in this study was the method in data discrepancies which resulted in the needs elicitation process being hampered and in the end software development found discrepancies and could not meet the need
... Show MoreDue to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreIn the present paper, Arabic Character Recognition Edge detection method based on contour and connected components is proposed. First stage contour extraction feature is introduced to tackle the Arabic characters edge detection problem, where the aim is to extract the edge information presented in the Arabic characters, since it is crucial to understand the character content. The second stage connected components appling for the same characters to find edge detection. The proposed approach exploits a number of connected components, which move on the character by character intensity values, to establish matrix, which represents the edge information at each pixel location .
... Show MoreFingerprints are commonly utilized as a key technique and for personal recognition and in identification systems for personal security affairs. The most widely used fingerprint systems utilizing the distribution of minutiae points for fingerprint matching and representation. These techniques become unsuccessful when partial fingerprint images are capture, or the finger ridges suffer from lot of cuts or injuries or skin sickness. This paper suggests a fingerprint recognition technique which utilizes the local features for fingerprint representation and matching. The adopted local features have determined using Haar wavelet subbands. The system was tested experimentally using FVC2004 databases, which consists of four datasets, each set holds
... Show MoreIn this paper, we introduce a method to identify the text printed in Arabic, since the recognition of the printed text is very important in the applications of information technology, the Arabic language is among a group of languages with related characters such as the language of Urdu , Kurdish language , Persian language also the old Turkish language " Ottoman ", it is difficult to identify the related letter because it is in several cases, such as the beginning of the word has a shape and center of the word has a shape and the last word also has a form, either texts in languages where the characters are not connected, then the image of the letter one in any location in the word has been Adoption of programs ready for him A long time.&
... Show More