Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essential. To this end, this paper presents an efficient method for 3D object recognition with low computational complexity. Specifically, the proposed method uses a fast overlapped technique, which deals with higher-order polynomials and high-dimensional objects. The fast overlapped block-processing algorithm reduces the computational complexity of feature extraction. This paper also exploits Charlier polynomials and their moments along with support vector machine (SVM). The evaluation of the presented method is carried out using a well-known dataset, the McGill benchmark dataset. Besides, comparisons are performed with existing 3D object recognition methods. The results show that the proposed 3D object recognition approach achieves high recognition rates under different noisy environments. Furthermore, the results show that the presented method has the potential to mitigate noise distortion and outperforms existing methods in terms of computation time under noise-free and different noisy environments.
In the current research, an eco-biosynthesis method for synthesizing silver nanoparticles (AgNPs) is reported using thymus vulgaris leaves (T. vulgaris) extracts. The optical and structural properties of the nanoparticles is determined using UV-visible, x-ray diffraction (XRD) and field emission scanning electron microscope (FESEM). In addition, the synthesis factors such as the temperature, the molar ratio of silver nitride and thymus vulgaris leaves extract have been investigated. The XRD pattern presented higher intensity for the five characteristic peaks of silver. FESEM images for same samples indicated that the particle size was distributed between 24-56 nm. In addition, it’s observed the formation of some aggregated Ag particles
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo
This paper presents an experimental study of cooling photovoltaic (PV) panels using evaporative cooling. Underground (geothermal energy) water used to extract heat from it during cooling and cleaning of PV panels. An experimental test rig was constructed and tested under hot and dusty climate conditions in Baghdad. An active cooling system was used with auxiliary an underground water tank to provide cold water as a coolant over both PV surfaces to reduce its temperature. The cellulose pad has been arranged on the back surface and sprays cooling on the front side. Two identical PV panels modules used: without cooling and evaporative water cooling. The experiments are comprised of four cases: Case (I): backside cooling, Ca
... Show MoreAnomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the
... Show MoreAs a result of the significance of image compression in reducing the volume of data, the requirement for this compression permanently necessary; therefore, will be transferred more quickly using the communication channels and kept in less space in memory. In this study, an efficient compression system is suggested; it depends on using transform coding (Discrete Cosine Transform or bi-orthogonal (tap-9/7) wavelet transform) and LZW compression technique. The suggested scheme was applied to color and gray models then the transform coding is applied to decompose each color and gray sub-band individually. The quantization process is performed followed by LZW coding to compress the images. The suggested system was applied on a set of seven stand
... Show MoreThe present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion
Sorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
The research aims to determine the mix of production optimization in the case of several conflicting objectives to be achieved at the same time, therefore, discussions dealt with the concept of programming goals and entrances to be resolved and dealt with the general formula for the programming model the goals and finally determine the mix of production optimization using a programming model targets to the default case.
This paper describes a research effort that aims of developing solar models for housing suitable for the Arabian region since the Arabian Peninsula is excelled with very high levels of solar radiation.
The current paper is focused on achieving energy efficiency through utilizing solar energy and conserving energy. This task can be accomplished by implementation the major elements related to energy efficiency in housing design , such as embark on an optimum photovoltaic system orientation to maximize seize solar energy and produce solar electricity. All the precautions were taken to minimizing the consumption of solar energy for providing the suitable air-condition to the inhibitor of the solar house in addition to use of energy effici