Radiological assessment for the East Baghdad oilfield-southern part was conducted in the current study. 10 samples (scale, soil, sludge, water, and oil) from the different stages of oil production were collected. 232Th, 226Ra, and 40K in the samples were analyzed with 40% efficiency for Gamma spectrometry. system based on HPGe. The findings indicated that the examined sites exhibit comparatively lower levels of NORM contamination, in contrast to other global oilfields. Nevertheless, certain areas, particularly those within separation stages, demonstrate relatively elevated NORM concentrations exceeding the global average in soil and sludge. The maximum value of 226Ra, 232Th, was found in sludge sample the findings indicated that over 70% of the sampled locations exhibited concentrations of Norm that surpassed the worldwide average values. The highest exposure dose rate readings within the study areas reached 0.13 µSv/h, which exceeds the worldwide dose rate of 58 nGy/h as reported by UNSCEAR. Radiation exposure dose and hazard indices were calculated using the concentrations of 232Th,226Ra and 40K within samples. Indeed, the indices encompass various factors, these metrics provide a comprehensive understanding of the radiation exposure and associated risks. The study indicated that the relatively more contaminated stages within the oil production stages are the 1st separation stage, desalter stage and the waste pit stage where the higher concentrations of 226Ra, 232Th and exposure rates are recorded. Generally, the site exposes dose rate within an acceptable rate. Generally, the values of all hazard indices indicate that samples of some locations have values higher than the values recommended by UNSCEAR and ICRP.
The optimization of artificial gas lift techniques plays a crucial role in the advancement of oil field development. This study focuses on investigating the impact of gas lift design and optimization on production outcomes within the Mishrif formation of the Halfaya oil field. A comprehensive production network nodal analysis model was formulated using a PIPESIM Optimizer-based Genetic Algorithm and meticulously calibrated utilizing field-collected data from a network comprising seven wells. This well group encompasses three directional wells currently employing gas lift and four naturally producing vertical wells. To augment productivity and optimize network performance, a novel gas lift design strategy was proposed. The optimization of
... Show MoreThe petrophysical analysis is significant to determine the parameters controlling the production wells and the reservoir quality. In this study, Using Interactive petrophysics software to analyze the petrophysical parameters of five wells penetrated the Zubair reservoir in the Abu-Amood field to evaluate a reservoir and search for hydrocarbon zones. The available logs data such as density, sonic, gamma ray, SP, neutron, and resistivity logs for wells AAm-1, AAm-2, AAm-3, AAm-4, and AAm-5 were used to determine the reservoir properties in Zubair reservoir. The density-neutron and neutron-sonic cross plots, which appear as lines with porosity scale ticks, are used to distinguish between the three main lithologies of sandstone, limesto
... Show MoreHistory matching is a significant stage in reservoir modeling for evaluating past reservoir performance and predicting future behavior. This paper is primarily focused on the calibration of the dynamic reservoir model for the Meshrif formation, which is the main reservoir in the Garraf oilfield. A full-field reservoir model with 110 producing wells is constructed using a comprehensive dataset that includes geological, pressure-volume-temperature (PVT), and rock property information. The resulting 3D geologic model provides detailed information on water saturation, permeability, porosity, and net thickness to gross thickness for each grid cell, and forms the basis for constructing the dynamic reservoir model. The dynamic reservoir mo
... Show MorePredicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods
... Show MoreA geological model was built for the Sadi reservoir, located at the Halfaya oil field. It is regarded as one of the most significant oilfields in Iraq. The study includes several steps, the most essential of which was importing well logs from six oil wells to the Interactive Petrophysics software for conducting interpretation and analysis to calculate the petrophysical properties such as permeability, porosity, shale volume, water saturation, and NTG and then importing maps and the well tops to the Petrel software to build the 3D-Geological model and to calculate the value of the original oil in place. Three geological surfaces were produced for all Sadi units based on well-top data and the top Sadi structural map. The reservoir has
... Show MoreShaky Baghdad heavy crude oil 22 API is processed by distillation and solvent extraction. The purpose of distillation is to separate the light distillates (light fractions) which represent 35% of heavy crude oil, and to obtain the reduced crude oil. The heavy residue (9 API) is extracted with Iraqi light naphtha to get the deasphaltened oil (DAO), the extraction carried out with temperature range of 20-75 oC, solvent to oil ratio 5-15:1(ml:g) and a mixing time of 15 minutes. In general, results show that API of DAO increased twice the API of reduced crude oil while sulfur and metals content decreased 20% and 50% respectively. Deasphaltened oil produced from various operating conditions blended with the
... Show MoreThis study utilizes streamline simulation to model fluid flow in the complex subsurface environment of the Mishrif reservoir in Iraq's Buzurgan oil field. The reservoir faces challenges from high-pressure depletion and a substantial increase in water cut during production, prompting the need for innovative reservoir management. The primary focus is on optimizing water injection procedures to reduce water cuts and enhance overall reservoir performance. Three waterflooding tactics were examined: normal conditions without injectors or producers, normal conditions with 30 injectors and 80 producers and streamline simulation using the frontsim simulator. Three main strategies were employed to streamline water injection in targeted areas.
... Show MoreABSTRACT
The simulation of groundwater movement has been carried out by using MODFLOW model
in order to show the impact of change of water surface elevation of the Tigris river on layers of
the aquifer system for Nuclear Research Center at Al-Tuwaitha area, in addition to evaluate the
ability of the proposed pumping well to collect groundwater and change the direction of flow at
steady-state. The results of the study indicated that there is a good match between the values of
groundwater levels that calculated in the model and measured in the field, where mean error is
0.09 m.
The study also showed that the increasing of water surface elevation of the
Terrorism is a serious problem for many societies today. This research aims to identify the impact of terrorism and displacement crisis on human security, which was a shock to the Iraqi society in terms of its impact on the psychological, social and economic conditions of the individual, family, and society. The variety of methods of carrying out the terrorist operations that resulted from the phenomenon of human displacement witnessed by Iraq since the middle of 2014. This phenomenon has its demographic, political and social dimensions.
In order to achieve the goal of this study and the importance of the subject, the social survey method was used by selecting a sample of 200 IDPs in a compou
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe